Courtesy of Shanghai Optics Inc
Case Study: Enhanced Infrared Lens Design with Wide Field of View (FOV)

Case Study: Enhanced Infrared Lens Design with Wide Field of View (FOV)

Courtesy of Shanghai Optics Inc
Case Study: Enhanced Infrared Lens Design with Wide Field of View (FOV)

Aspherical lenses significantly enhance optical systems by reducing aberrations and improving overall quality. Unlike traditional spherical lenses, aspherical lenses provide greater design freedom, allowing for better optimization. This is especially beneficial for lenses with large relative apertures, wide fields of view, and zoom capabilities. 

Infrared Lens Design with Aspherical Lenses

Infrared lenses benefit particularly from aspherical designs due to the requirement for materials that transmit infrared wavelengths, such as germanium, zinc sulfide, and zinc selenide. These materials are more expensive than ordinary glass. Utilizing aspherical lenses can reduce the number of components needed, thus lowering the system’s complexity, volume, weight, and overall cost. Despite the complexity of manufacturing aspherical lenses, the reduction in the use of costly infrared materials often leads to significant cost savings. Additionally, fewer lenses reduce light transmission losses and improve overall system transmittance. 

Project Overview

This case study involves designing a wide field-of-view, long wavelength infrared lens initially composed of spherical lenses. The design used chalcogenide glass and germanium for non-thermal treatment and was complex, with a field of view of 103°. By switching the first lens to an aspherical design, the lens structure was significantly simplified, expanding the field of view to 127°.

To read the entire case study, visit Shanghai Optics' website.

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.