Process Metrology Helps Ensure Quality of Smartphone Camera Lenses

Feb. 19, 2019

ZYGO's Compass ™ micro lens metrology system helps manufacturers verify lens quality and refine their manufacturing processes.

Micro Lenses for Smartphone Camera Module, and Lens Molds
Precision 3D Measurement of Smartphone Micro Lens
Compass™ Micro Lens Metrology System

With approximately 40 million micro lenses manufactured every day, there is an increasing demand for fast, high-quality, reliable metrology to support this scale of precision manufacturing. As cameras increase in image quality, tolerances of lens designs become tighter, and characterization requirements become broader. To gain a sense of the metrology requirements, and how the ZYGO's Compass™ micro lens metrology system can meet these requirements, we need to look at the manufacturing process.

How Smartphone Micro Lenses are Made

Before a micro lens can be manufactured, a metal lens mold must be diamond-turned to a specific aspheric shape with tight dimensional tolerances. Two molds are required for each lens design, corresponding to Side 1 and Side 2 of the lens. Once the molds are cut, they are brought together, creating a cavity. Optical grade plastic is injected into the cavity, forming a plastic micro lens. Typically, each camera lens module requires 4 to 6 lenses of unique design. These lenses are then assembled into a stack and become the heart of the camera lens module.

Metrology of In-Process Micro Lenses

The Compass™ micro lens metrology systemprovides lens verification through the measurement of micro lenses and lens molds, and does so without contacting the surface of the samples being measured – completely avoiding any potential for damage. It can help to standardize and streamline the verification process, providing full characterization of highly-precise micro lenses, and does it in a fraction of the time of competing systems.

One System – Multiple Measurement Types

The system's custom multi-axis staging allows for characterization of a wide variety of lens designs, with complex geometries, without sacrificing measurement accuracy. And ZYGO's proprietary Mx™ software provides a full suite of measurement results which would typically require 2 or 3 conventional metrology instruments to replicate. By reducing the number of tools in the inspection process, less time is spent on operator training. Additionally, one Compass™ system may replace multiple conventional instruments thus freeing up valuable floor space in a manufacturing facility.

Catching Defects, and Gaining Process Insight

Not only does the Compass™ system feature a broad range of capabilities, it is actively solving industry problems. Increasingly complex camera designs require complex surface geometries such as gullwing, bathtub, high-slope concave and convex style lenses. While these present a challenge for both manufacturing and conventional metrology, the Compass™ system can characterize all these types of surfaces without compromising precision or accuracy. Through full-surface 3D metrology, the Compass™ system can identify defects that would otherwise be missed, which would be detrimental to lens performance and image quality. Identifying and quantifying them can give manufacturers valuable insight about their processes.

The Right System for Now, and for the Future

The rapid growth of micro lens technology in consumer electronics requires a metrology instrument that works at the speed of the industry. The Compass™ system has set the standard for micro lens metrology systems that measure deviation and process asymmetries with ease. Products will only grow more complex, so having a versatile, precise, and powerful surface metrology system available is integral to be ready for whatever is next in micro lenses.


Learn more about the capabilities of ZYGO's Compass™ micro lens metrology system.  Just fill out this form to get started...

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!