MULTISPECTRAL IMAGING: USDA hyperspectral imager

Aug. 26, 2010
Hyperspectral imaging can be used to distinguish the food-borne pathogen Campylobacter from other microorganisms as quickly as 24 hours after a sample is placed in a Petri dish.

Washington, DC--Hyperspectral imaging can be used to distinguish the food-borne pathogen Campylobacter from other microorganisms as quickly as 24 hours after a sample is placed in a Petri dish, according to a study published by U.S. Department of Agriculture (USDA) scientists.

Large spectral range

The researchers, with USDA's Agricultural Research Service (ARS), used hyperspectral imaging (which combines digital imaging with spectroscopy) to provide hundreds of individual wavelength measurements for each image pixel. The hyperspectral imager has a spectral range that extends from UV to near-IR.

Campylobacter infections in humans are a major cause of bacterial food-borne illness. Growing Campylobacter directly on solid media has been an effective method to isolate this organism, but distinguishing Campylobacter from non-Campylobacter microorganisms is difficult because different bacteria can often look very similar. Normally, isolation and detection for identification of Campylobacter from foods like raw chicken involve time-consuming or complicated laboratory tests that may take several days to a week.

The USDA technique, which was nearly 100% accurate with pure cultures of the microorganisms, could be used for early detection of presumptive Campylobacter colonies in mixed cultures. The researchers are working toward developing a presumptive screening technique to detect Salmonella and Campylobacter in food samples.

Findings from this study were published in the journal Sensing and Instrumentation for Food Quality and Safety. This research supports the USDA priority of ensuring food safety.

Subscribe now to Laser Focus World magazine

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!