Toshiba camera integrated into retinal imaging microscope from Phoenix Research Labs
Irvine, CA--Toshiba Imaging Systems Division, a provider of 3CCD industrial and scientific cameras and high definition (HD) camera technology (see Toshiba’s Photonics West video), has integrated its high-sensitivity IK-TF7 3CCD camera into the new Micron III retinal imaging microscope developed by Phoenix Research Labs (San Ramon, CA).
The third-generation system is an advanced retinal microscope for mice and rats that is enabling new modalities in high resolution imaging for in-vivo eye research. Testing and diagnostic research includes white light imaging mice and rats, fluorescein angiography, diabetic retinopathy, retinoblastoma, choroidal neovascularization, retinitis pigmentosa, and anterior segment slit-lamp. Live animal fluorescent studies such as green fluorescent protein (GFP) and yellow fluorescent protein (YFP) are also made possible with the advanced Micron III system.
The Toshiba IK-TF7 3-chip, progressive-scan color camera is integrated into the Micron III. Features include high resolution (1024 x 768 pixels), small pixel size (4.65 x 4.65 microns) and a color reproduction that is enhanced with a unique color-shading feature, make this camera especially useful in retinal microscopy imaging. The camera design utilizes Toshiba’s proprietary prism block color technology which permits the accurate capture of fast-moving color items under test, such as the retinal movement in rats and mice.
The compact camera can image up to 90 frames per second; it eliminates image jitter through the incorporation of three on-third-inch progressive scan CCDs. The co-site sampling arrangement of the CCD sensors also eliminates RGB shift, making image capture more accurate with this progressive scan camera. Other features, such as partial scanning capability, a field removable/replaceable infrared (IR) filter, the on-screen and RS-232C setup, asynchronous reset, long-term integration, and shutter speeds from 1/100 to 1/100,000 seconds, make this imager ideal for retinal research, scientific experiments, and other machine vision applications.
--Posted by Gail Overton; [email protected]; www.laserfocusworld.com.