Cellulose has birefringence useful in flexible displays

May 2, 2019
Stretching hydrogels can create unidirectionally aligned cellulose nanofiber films potentially useful in LCD filters.

A team at the Institute of Scientific and Industrial Research at Osaka University has determined the optical parameters of cellulose molecules with exceptional precision.1 They found that cellulose's intrinsic optical birefringence is high enough to be used in optical displays, such as flexible liquid crystal display (LCD) screens or electronic paper.

Cellulose, a naturally occurring polymer, consists of many long molecular chains. Because of its rigidity and strength, cellulose helps maintain the structural integrity of the cell walls in plants. It makes up about 99% of the nanofibers that comprise nata de coco (a tropical dessert made from coconut water), and helps create its unique and tasty texture.

The team at Osaka University used unidirectionally-aligned cellulose nanofiber films created by stretching hydrogels from nata de coco at various rates. Nata de coco nanofibers allow the cellulose chains to be straight on the molecular level, and this is helpful for the precise determination of the intrinsic birefringencethat is, the maximum birefringence of fully extended polymer chains.

The main application the researchers envision is as light-compensation films for LCDs, since they operate by controlling the brightness of pixels with polarization filters. Potentially, any smartphone, computer, or television that has an LCD screen could see improved contrast, along with reduced color unevenness and light leakage, with the addition of cellulose nanofiber films.

"Cellulose nanofibers are promising light-compensation materials for optoelectronics, such as flexible displays and electronic paper, since they simultaneously have good transparency, flexibility, dimensional stability, and thermal conductivity," says lead author Kojiro Uetani.

Source: https://resou.osaka-u.ac.jp/en/research/2019/20190417_1

REFERENCE:
1. Kojiro Uetani, Hirotaka Koga, and Masaya Nogi, ACS Macro Letters (2019); doi: 10.1021/acsmacrolett.9b00024.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!