Tiny avalanche photodiode detects single ultraviolet photons

Jan. 30, 2008
January 30, 2008, Evanston, IL--Researchers at Northwestern University's Center for Quantum Devices have demonstrated visible-blind avalanche photodiodes capable of detecting single photons in the ultraviolet region (360-200 nm).

January 30, 2008, Evanston, IL--Researchers at Northwestern University's Center for Quantum Devices have demonstrated visible-blind avalanche photodiodes capable of detecting single photons in the ultraviolet region (360-200 nm).

Previously, photomultiplier tubes were the only available technology in the short wavelength UV portion of the spectrum capable of single photon detection sensitivity. However, these fragile vacuum tube devices are expensive and bulky, hindering true systems miniaturization.

The Northwestern team, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at Northwestern's McCormick School of Engineering, became the world's first to demonstrate back-illuminated single photon detection from a III-nitride photodetector. These back-illuminated devices, based on GaN compound semiconductors, benefit from the larger ionization coefficient for holes in this material. The back-illumination geometry will facilitate future integration of these devices with read-out circuitry to realize unique single-photon UV cameras. Towards that end, the team has already demonstrated excellent uniformity of the breakdown characteristics and gain across the wafer.

The devices are coupled with a quenching circuit and operated under large reverse bias, an arrangement termed in Geiger mode operation. The sensor system presents an effective photocurrent gain greater than 107, single photon detection efficiencies of 23%, dark count rates of less than 1 kHz, and no response to visible radiation.

Once optimized, discrete detectors could be combined with the ultraviolet LEDs already pioneered by the Center for Quantum Devices to create an inexpensive detection system capable of identifying the unique spectral fingerprints of a biological agent attack. They can also be paired with UV LEDs to create a new form of non-line of sight UV-communication, secure from remote eavesdropping.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!