Polymer solar-photovoltaic-thermal device provides heat, saves money

April 4, 2011
A new polymer-based solar-photovoltaic-thermal device generates power from both heat and visible sunlight.

Winston-Salem, NC--A new polymer-based solar-photovoltaic-thermal device generates power from both heat and visible sunlight, which could shave the cost of heating a home by as much as 40%.

Geothermal add-ons for heat pumps on the market today collect heat from the air or the ground. This new device uses a fluid that flows through a roof-mounted solar module to collect heat from the sun while an integrated photovoltaic (PV) cell generates electricity from the sun's visible light.

"It's a systems approach to making your home ultra-efficient because the device collects both solar energy and heat," said David Carroll, director of the Center for Nanotechnology and Molecular Materials at Wake Forest University. "Our solar-thermal device takes better advantage of the broad range of power delivered from the sun each day." The research appears in the March issue of Solar Energy Materials and Solar Cells.

A standard rooftop silicon solar cell will miss about 75% of the energy provided by the sun at any given time because it can't collect light very far into the IR region (although a "black silicon" coating can extend this range somewhat). The design of the new solar-thermal device takes advantage of this longer-wave IR through an integrated array of clear tubes 5 mm in diameter. They lie flat, and an oil blended with a dye flows through them. The visible sunlight shines into the clear tubes and the oil inside and is converted to electricity by a spray-on polymer PV layer on the back of the tubes. This process also heats the oil, which can then flow into a heat pump, for example, to transfer the heat into a home.


Unlike flat solar cells, the curve of the tubes inside the new device allows for the collection of both visible light and IR heat from nearly sunrise to sunset. Because of the general structure and the ability to capture light at oblique angles, the solar-thermal device can be truly building-integratedit can be made to look nearly identical to roofing tiles used today.

Tests of the solar-thermal device have shown 30% efficiency in converting solar energy to power (heat plus electricity). By comparison, a standard solar cell with a polymer absorber has shown no greater than 8% conversion efficiency.

The research team will build the first square-meter-size solar-thermal cell this summer, a key step in getting the technology ready for market.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!