Philips moves towards flexible displays

Oct. 2, 2000
A team at Philips Research Laboratories (Eindhoven, Netherlands) has succeeded in making a 64 x 64-pixel display in which each pixel is driven by a thin-film transistor (TFT) based on a polymer semiconductor.

A team at Philips Research Laboratories (Eindhoven, Netherlands) has succeeded in making a 64 x 64-pixel display in which each pixel is driven by a thin-film transistor (TFT) based on a polymer semiconductor. While the display is still currently made on a glass screen, the incorporation of polymer electronics is an important step toward the realization of low-cost, all-polymer, flexible displays. The ultimate market for these includes high-information-content products such as the flexible electronic newspaper.

The active matrix is a method of addressing an array of liquid-crystal cells, one cell per monochrome pixel, allowing the screen to be refreshed more rapidly. The Philips display operates at switching frequencies as high as 100 Hz. In conventional systems, the active matrix is made using amorphous-silicon-based TFTs and represents a major part of the cost of the display. In the new system, each of the 4096 pixels of the demonstrator active-matrix display is switched by its own TFT based on a polymer semiconductor; at present only the semiconductor part of the transistors consists of polymer, and the transistors are made on a solid substrate. All-polymer transistors on flexible substrates have been demonstrated already by the same group of researchers. All-polymer TFTs are currently being incorporated in the next prototype flexible display.

Polymer-based active-matrix systems offer a major advantage in lower-cost production methods, as fewer production steps and less stringent clean-room conditions are required. It is also possible, in principle, to print the switches on plastic foil in a reel-to-reel process. The resulting matrix of switches can be very large in size. This brings high-volume, flexible display systems a step closer.

About the Author

Bridget Marx | Contributing Editor, UK

Bridget Marx was Contributing Editor, UK for Laser Focus World.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!