Nanostructured, reflective, and flexible skin-like display boasts full color

June 25, 2015
A nanostructured plasmonic surface in conjunction with liquid crystals creates a tunable polarization-independent reflective display.

Structural color arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. But researchers from the University of Central Florida (UCF; Orlando, FL), by using a specially designed nanostructured plasmonic surface in conjunction with high-birefringence liquid crystals (LCs), demonstrated a tunable polarization-independent reflective display surface where the color of the surface is changed as a function of applied voltage.

RELATED ARTICLE: Ultrathin nanostructured metals double plasmonic color filter transmission

The researchers say that a large range of color tunability is achieved over previous reports by using an engineered surface that allows full LC reorientation while maximizing the overlap between plasmonic fields and LCs. In combination with imprinted structures of varying periods, a full range of colors spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.

This paper appeared in the June issue of Nature Communications.


About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!