Uncooled infrared focal-plane array offers low-cost thermal imagers

Dec. 1, 1995
Expanded military and commercial applications of thermal imaging are seen by Amber (Goleta, CA) as a result of its fabrication of an uncooled infrared (IR) focal-plane array based on microbolometer technology developed by Honeywell (Bloomington, MN).

Expanded military and commercial applications of thermal imaging are seen by Amber (Goleta, CA) as a result of its fabrication of an uncooled infrared (IR) focal-plane array based on microbolometer technology developed by Honeywell (Bloomington, MN). Amber integrated this array with a proprietary CMOS silicon-readout integrated circuit. A 320 × 240 bolometer focal-plane array less than an inch square forms the uncooled sensor, which operates in the 8 × 12-µm wavelength region. The company claims the images obtained are comparable to ones taken with its cooled, InSb-based Radiance 1 camera.

Previous uncooled IR imaging based on ferroelectric technology required mechanical choppers to extract and stabilize an image signal from noise. Also a source of audible noise, choppers need to operate constantly and increase system complexity. Ferroelectric technology can achieve about 0.15°C0.20°C noise-equivalent temperature difference (NETD), which is a standard measurement describing the minimum change of temperature that can be sensed in a scene being viewed. Amber says its microbolometer based array has a NETD of 0.1°C.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!