Joint-tagging Super-resolution Optical Fluctuation Imaging: Live-cell imaging enables super resolution in space and time

May 5, 2015
Super-resolution microscopy methods provide sub-diffractional spatial resolution, and thereby enable visualization of subcellular organelles.

Super-resolution microscopy methods provide sub-diffractional spatial resolution, and thereby enable visualization of subcellular organelles. But high spatial resolution is typically achieved at the expense of temporal resolution. And the methods generally involve complicated and costly instrumentation, which hinders their wide application.

Now, a research team at Peking University (Beijing, China) has demonstrated a novel technique designed to provide high spatial and temporal resolution-simultaneously. Using light's spectral characteristic, the researchers have combined three techniques: Quantum dot (QD), spectrum isolation, and super-resolution optical fluctuation imaging (SOFI).

The method is simple, according to Peng Xi, Ph.D., Associate Professor in the Department of Biomedical Engineering: In a technique called "joint tagging" (JT), the subcelluar organelle is labeled with multiple types of QDs—and then imaged using separate color channels (simultaneous excitation is possible because of the unique blue-shifted absorption spectrum of QDs). The QDs' fluorescence emission is characterized by blinking and by a narrow spectrum. The dots can be detected by individual color channel and analyzed with a single-molecule statistical-based super-resolution technique called super-resolution optical fluctuation imaging (SOFI).

The approach enables spatiotemporal resolution up to 3 s and 85 nm using a conventional, wide-field fluorescence microscope.1 Joint tagging with multiple QDs at one subcellular target enables suppression of artefacts, and results in high-fidelity image reconstruction. Further, as the spectrally isolated QDs are closer to single-molecule status,2 JT-SOFI can largely improve the temporal resolution of super-resolution imaging. It therefore provides a novel solution for imaging live cells.

1. Z. Zeng et al., Sci. Rep., 5, 8359 (2015); doi:10.1038/srep08359.

2. E. Betzig, Opt. Lett., 20, 3, 237–239 (1995).

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!