Light enables passive testing of CMOS chips

Nov. 1, 1997
Light emissions from hot electrons have given researchers a new way of testing silicon-based integrated circuits without active probing.

Light emissions from hot electrons have given researchers a new way of testing silicon-based integrated circuits without active probing. The method allows high-speed signals to be tracked as they travel through particular gates and will be usable even as complementary metal oxide semiconductor (CMOS) feature sizes shrink. The technique has already been demonstrated on 0.25-µm devices, and work is underway to perform inspection from the back (substrate) side of a silicon wafer, which would allow chips to be examined despite the presence of many layers of metallization.

Unless they are in transitionwhen gates are switchingCMOS circuits draw almost no current. During transition, the MOS field-effect transistors (MOSFETs) that make up the gate are saturated for between 10 and 100 ps, creating hot carriers that emit photons through intraband transitions.1 Re searchers Jeffrey Kash and James Tsang of IBM Thomas J. Watson Research Center (Yorktown Heights, NY), have worked on ways of capturing this light. Their goal has been to provide information about how a particular circuit, or a whole chip full of circuits, operates.

The system they use is essentially a microscope with a recording detector. The choice of sensor determines the kind of information that the final image or images will show. The simplest option is the charged-coupled device (CCD), which integrates the low-light signal over time. Images are taken of the silicon wafer as it processes informationexactly what information being determined by the kind of diagnosis requiredand the result is a time-averaged picture of the gates that switched. Transistors that were busy during image capture will be bright and the idle ones will be dark. This method could be particularly useful for identifying chips that have faults or making comparisons between identical chips that are behaving differently. It is fast, and an entire chip can be characterized in a single measurement.

Another option is to use a sensor that can record the incoming photons in time as well as space (see figure). This is not easy because the detector used must have a temporal resolution on the order of tens of picoseconds. The device that the IBM team chose to use is a microchannel plate (MCP) photomultiplier tube (PMT) with a photocathode that can detect wavelengths up to 870 nm. Again, photons were integrated over time to get a usable image, but they were integrated only with photons recorded at the same point in the logic cycle. One way to think of this is simply repeating the same data process many times, capturing a set of time-resolved images for each repetition, and overlaying all of the resulting "movies" on top of each other. Thus, enough photons are counted without losing time information.

In the IBM experiment, oscillating circuits were used that inherently produced an output signal at the end of each loop.2 These triggered the detector, essentially "time-stamping" them. The result, after combining all the recorded data, was a slowed-down motion picture of the electrical signal traveling from gate to gate around the circuit.

Back-side inspection

The next step is to perform this same experiment, but looking at the bottom or substrate-side of the wafer instead of the top. This will be important for real applications because of the increasing use of many metal interconnection layers that prevent light escaping from the silicon. Emissions from the hot carriers produce enough infrared light (for which silicon is transparent) to make this back-side inspection possible. The researchers, however, have come across two major problemstime and wavelengththough in one sense they are both the same problem. Many detectors are sensitive to infrared wavelengths, but none can image a whole plane with enough temporal resolution to make the "real-time" system work. Likewise, the MCP/PMT combination has all the right characteristics except for its inability to see infrared.

If the right image-capture device can be found, the new method should be both powerful and long-lived. Researchers have shown that, as feature sizes decrease, the light emitted per electron through the gate actually increases. Thus, the technique should be even better at diagnosing tomorrow's computer chips than today's.

REFERENCES

1. J. C. Tsang and J. A. Kash, Appl. Phys. Lett. 70(7), 889 (17 Feb. 1997).

2. J. A. Kash and J. C. Tsang, IEEE Electron. Device Lett. 18(7), 330 (July 1997).

About the Author

Sunny Bains | Contributing Editor

Sunny Bains is a contributing editor for Laser Focus World and a technical journalist based in London, England.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!