Near-IR heterodyne detector could help find life on exoplanets

April 1, 2014
A group of Russian scientists has developed a fiber-coupled optical receiver for heterodyne IR spectroscopy operating at 1.5 μm; the device is based on a superconducting hot-electron bolometer (HEB).

Heterodyne detection in the infrared (IR) is one approach to the future detection of possible biochemical reactions on exoplanets, signaling life light years away. Now, a group of Russian scientists from Moscow State Pedagogical University and other institutes in Moscow has developed a fiber-coupled optical receiver for heterodyne IR spectroscopy operating at 1.5 μm; the device is based on a superconducting hot-electron bolometer (HEB). The measured noise for the device was 25 dB—only about 10 dB higher than the quantum noise limit. Previous to this demonstration at IR wavelengths (a frequency of around 200 GHz), the highest-frequency detection achieved by a HEB has been in the terahertz region at about 5.25 THz.

The sensitive area was about 7 μm square, chosen to closely match the 9-μm-diameter core of a standard single-mode fiber; the device has a bandwidth of about 2.5 GHz. The cryogenically cooled niobium nitride (NbN) superconducting detectors were enhanced with gold optical nanoantennas in a zebra-stripe pattern, which produced a 25% absorption efficiency for polarized light—three times that of an unpatterned NbN device. The 25 dB measured noise can likely be reduced by improving the optical coupling to the NbN receiver. In addition to astronomy, uses of the NbN HEB include quantum-optical tomography and fiber-optic sensing. Contact Yury Lobanov at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!