• High-performance Ge p-i-n APDs fabricated by point-defect healing

    An international group has created low-defect germanium (Ge) p-i-n avalanche photodiodes (APDs) via a point-defect-healing process consisting of annealing between 600°C and 650°C.
    July 28, 2014
    2 min read

    An international group has created low-defect germanium (Ge) p-i-n avalanche photodiodes (APDs) via a point-defect-healing process consisting of annealing between 600°C and 650°C. The APDs have a sub-1-μA dark current for reverse currents below 5 V, a low operating voltage (avalanche-breakdown voltage of 8 to 13 V), and a multiplication gain of 440 to 680. The researchers hail from Sungkyunkwan University (Suwon, South Korea), Stanford University (Palo Alto, CA), Samsung Electronics (Gyeonggi-Do, South Korea), Korea University (Seoul, South Korea), and Nanyang Technological University (Singapore).

    A 1-μm-thick intrinsic Ge film was heteroepitaxially grown on a silicon (Si) substrate; next, a 15-nm-thick film of silicon dioxide (SiO2) was grown as a deposition stop. Implanting boron and phosphorus then defined the p- and n-well regions; well depth was about 300 nm. Arsenic and boron ions were implanted next to form n+ and p+ regions, which had been previously photolithographically patterned. The point defects were healed by annealing in a nitrogen atmosphere for 1 hr, then the SiO2 layer was removed by etching. Finally, titanium and aluminum films were deposited on the lithographically defined areas. Current/voltage (I/V) measurements were taken using a laser light source emitting 0.25 mW at a 1.3 μm wavelength. The optimum doping concentration of the p-type intrinsic region was on the order of 1017 cm-3. Contact Jin-Hong Park at[email protected].

    Sign up for Laser Focus World Newsletters
    Get the latest news and updates.

    Voice Your Opinion!

    To join the conversation, and become an exclusive member of Laser Focus World, create an account today!