Buried silicide mirror improves efficiency of resonant-cavity detector

Jan. 1, 1999
Silicon-based photodetectors would be attractive for long-wavelength focal-plane arrays (FPAs) except for their low quantum efficiency. Readout circuits on FPAs are generally silicon-based, and integrating them with silicon detectors would avoid such problems as thermal mismatch that result from hybridized approaches. Researchers at the Defence Research Agency (Malvern, England) have demonstrated that a p-type silicon germanium-silicon (SiGe-Si) resonant-cavity device with quantum wells above a

Buried silicide mirror improves efficiency of resonant-cavity detector

Silicon-based photodetectors would be attractive for long-wavelength focal-plane arrays (FPAs) except for their low quantum efficiency. Readout circuits on FPAs are generally silicon-based, and integrating them with silicon detectors would avoid such problems as thermal mismatch that result from hybridized approaches. Researchers at the Defence Research Agency (Malvern, England) have demonstrated that a p-type silicon germanium-silicon (SiGe-Si) resonant-cavity device with quantum wells above a high-reflectance tungsten silicide layer can enhance photoresponse by a factor of eight. The current best performance comes from hybridized n-type gallium arsenide/aluminum gallium arsenide (GaAs/AlGaAs) quantum-well infrared photodetectors. But the SiGe-Si device, using normally incident radiation at the resonance wavelength, creates a standing optical wave in the cavity that increases quantum efficiency to a value comparable to the GaAs/AlGaAs device. The researchers say that making the device so the quantum wells are only in regions of high electric field could enhance the photo response by as much as 16 times. The device operates in the 8-12-µm band. Varying device composition and the width of the quantum wells allows adjustment of the peak spectral responsivity to a desired wavelength. See www.dera.gov.uk/dera.htm.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!