NOVEL STRUCTURES: GaN pyramids prove promising for microcavities

Nov. 1, 1999
Microcavities have the potential to be enormously efficient lasers.

Microcavities have the potential to be enormously efficient lasers. Several groups of researchers are capitalizing on a method of growing tiny pyramids of high-quality gallium nitride (GaN) that could potentially be used to create arrays of efficient electrically pumped blue-green lasers. The selective epitaxial overgrowth method can be used to grow high-quality GaN.

In 1998, Serge Bidnyk and others at Oklahoma State University (Stillwater, OK) and Honeywell (Plymouth, MN) demonstrated laser action in optically pumped GaN pyramids that measured about 15 µm across the base and 15 µm tall.1 More recently, Hongxing Jiang and Jiangyu Lin's group at Kansas State University (Manhattan, KS) and Honeywell described the optical resonance modes in GaN pyramidswork essential to optimizing and controlling lasing in these cavities.2

Forming high-quality GaN with few dislocations is difficult because an ideal substrate does not exist for the material. The lateral overgrowth method, explains Jiang, uses a sapphire substrate covered with a masking layer in which holes are opened. The GaN is grown by metal-organic chemical-vapor deposition up through the windows, then sideways across the masking layer. The lateral overgrowth results in material with much better quality. Depending on the growth conditions, the material can grow into prisms or pyramids.

Microcavities have been made in the form of rings or disks, and the optical modes in these structures tend to be radial or whispering-gallery modes. The mode structures in hexagonal pyramidsa shape dictated by the crystal lattice of GaNare less evident. Unlike disks and rings, which are nearly two-dimensional, the pyramids are three-dimensional (3-D) cavities. The sides of the pyramid are very smooth, which gives the cavity a higher quantum efficiency. Also, unlike the disks and rings, the pyramidal cavity could be designed to emit a beam from each of its six sides. In combination with the ability to make arrays of the lasers, such properties might be useful for scanners or 3-D displays.

The next step in developing these devices, says Jiang, is enabling electrical pumping. The pyramids measure about 10 µm on a side and stand about 15 µm tall. As a result, the contacts have to be made on sides that are not parallel to the plane of the wafer.

The group is also interested in learning how the size of the pyramids alters the optical properties. To make a cavity that resonates in a single mode, says Jiang, is another challenge because it would need to be much smaller. Other potential applications for the tiny GaN pyramids include use as a solid-state UV detector. Whereas most detectors are flatand therefore may need to turn to follow the targeta pyramid detector could remain fixed. The target's direction could be determined by detecting the signal to the different surfaces of each pyramid.


  1. S. Bidnyk et al., Appl. Phys. Lett. 73(6), 2242 (19 Oct 1998).
  2. H. X. Jiang et al., Appl. Phys. Lett. 75(6), 763 (9 Aug 1999).
About the Author

Yvonne Carts-Powell | Freelance Writer

Yvonne Carts-Powell is a freelance writer living in Belmont, MA.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!