Miniature space-qualified platform cools superconducting single-photon IR detector

Nov. 9, 2017
A miniaturized Stirling and Joule-Thomson (J-T) cooling platform, which was the prototype design for the cooler launched in 2009 onboard an Ariane 5 rocket as part of the Planck space mission, has been applied to cool superconducting nanowire single-photon detectors to 4.2 K.

A miniaturized Stirling and Joule-Thomson (J-T) cooling platform, which was the prototype design for the cooler launched in 2009 onboard an Ariane 5 rocket as part of the Planck space mission, has been applied to cool superconducting nanowire single-photon detectors (SNSPDs) to 4.2 K by a team of researchers from the University of Glasgow (Glasgow, Scotland), STFC Rutherford Appleton Laboratory (Didcot, England), Single Quantum (Delft, Netherlands), and the Royal Institute of Technology (KTH; Stockholm, Sweden). The SNSPD class of infrared (IR) single-photon detectors offers superior detection efficiency, low timing jitter, much lower dark-count rate, and longer-wavelength (to 5 μm) sensitivity compared to competing indium gallium arsenide/indium phosphide (InGaAs/InP)-based single-photon avalanche photodiodes (SPADs) that are limited to 1.7 μm operation. However, SNSPD deployment outside the laboratory has been hindered, until now, by the need for expensive, bulky, power-hungry cryogenic cooling systems or hazardous liquid helium.

The miniaturized cryostat system consists of the prototype spaceborne cooler with a 170 K first-stage Stirling, 20 K second-stage Stirling, and 4.2 K third-stage J-T cooler, where a SNSPD mount was placed to hold the fiber-coupled single-pixel detector, which has a 20% detection efficiency at 1310 nm. The gas compressors were developed for spaceborne applications using flexure bearings for long life. This configuration requires only 130 W of input power and could easily be optimized to fit in a 19 in. rack and run from a battery. The current detector was used to demonstrate single-photon light detection and ranging (lidar) applications at 1310 nm, as well as singlet oxygen luminescence detection at 1270 nm that could enable dose monitoring for photodynamic therapy in cancer treatment. Reference: N. R. Gemmell et al., Supercond. Sci. Technol., 30, 11, 1-6 (Sep. 29, 2017).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!