Femtosecond laser and x-ray streak camera probe matter in extreme conditions

July 1, 1998
At the Center for Ultrafast Optical Science, University of Michigan (Ann Arbor, MI), a team led by Don Umstadter has analyzed high-density/low-temperature strongly coupled plasmas with a 100-fs Ti:sapphire laser. Such plasmas are found in inertial-confinement-fusion reactors, white and brown dwarf stars, and Jovian planets. Laser pulses of 50 mJ at 780 nm were focused with a magnesium fluoride lens to an intensity of 1017 W/cm2 on rotating solid-carbon-disk targets. The emission spectra from the

Femtosecond laser and x-ray streak camera probe matter in extreme conditions

At the Center for Ultrafast Optical Science, University of Michigan (Ann Arbor, MI), a team led by Don Umstadter has analyzed high-density/low-temperature strongly coupled plasmas with a 100-fs Ti:sapphire laser. Such plasmas are found in inertial-confinement-fusion reactors, white and brown dwarf stars, and Jovian planets. Laser pulses of 50 mJ at 780 nm were focused with a magnesium fluoride lens to an intensity of 1017 W/cm2 on rotating solid-carbon-disk targets. The emission spectra from the resulting plasma were recorded with a grazing-incident, flat-field-imaging extreme-ultraviolet spectrometer coupled to a subpicosecond x-ray streak camera.

With a technique used for the first time in spectroscopy, the researchers extended the range of the streak camera and increased its signal-to-noise ratio by coupling to the camera a jitter-free averaging swee¥system comprising two photoconductive switches triggered by part of the femtosecond beam that sweeps the plates of the camera at 10 GHz, synchronized with the target emission. The technique greatly improved laser contrast and enabled the researchers to derive the first experimental confirmation of the predicted behavior of atoms in superdense environments.

Sponsored Recommendations

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Video: December 1, 2023 Photonics Hot List

Dec. 1, 2023
In this episode, we cover how laser scanning aids advanced robotics, ultrafast lasers on the tip of a finger, and a tunable laser that controls material functionality.

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!