CMOS camera analysis could help prevent construction industry injuries

Aug. 10, 2021
Simulated falls recorded by the CMOS camera were then analyzed using image identification technology to determine the motion, speed, and acceleration of selected points in sequences of frames.

Fall arrest systems used in the construction industry come in a variety of designs and are subject to rigorous performance testing. To investigate the effectiveness of different system designs, the Professional Association Institute for Occupational Safety (Berufsgenossenschaftliches Institut für Arbeitssicherheit; Sankt Augustin, Germany) recently conducted a study using anthropomorphic dummies that revealed potential failings in several safety harnesses during a simulated fall arrest. These dangers concerned mainly shoulder straps slipping, along with sternal and dorsal attachments causing injury. The behavior of the harnesses during fall arrest depends significantly on their construction, especially on the arrangement of straps and attachment buckles.

Falls of the anthropomorphic dummy and the behavior of the harnesses during fall arrest were recorded using a Mikrotron (Unterschleissheim, Germany) Cube 7 MotionBLITZ EoSens camera set to 1024 × 1024 pixel resolution at 1410 fps. Its Dynamic Range Adjustment feature allowed the researchers to dynamically adjust the camera’s CMOS sensor for higher contrast scenes. Recorded material was then analyzed using TemaMotion Starter II image identification technology to determine the motion, speed, and acceleration of selected points in sequences of frames.

Analysis of fall arrest recordings revealed instances of the sternal attachment impacting the dummy’s face. Pressure was exerted on the dummy’s neck and head as a result of the dorsal D-ring sliding upward along the shoulder straps. In some models of harnesses, the steel buckle traveled along the shoulder straps causing the straps to tighten around the dummy’s neck and head, and potentially injuring the face area.

The majority of safety harness tests are conducted following the methods stipulated in international safety standards calling for the use of a rigid torso dummy, instead of an anthropomorphic dummy which more closely simulates human response. The researchers at Berufsgenossenschaftliches Institut für Arbeitssicherheit believe that the rigid torso dummy is insufficient for a comprehensive evaluation of harness performance and their safety parameters. Considering the significance of the results obtained, the researchers expect to continue testing for other dummy positions, such as head down, head inclined sideways, and positions causing rotation, using the Mikrotron camera. The study of such cases will allow the development of better criteria for assessing safety harnesses and improving their overall design.

Source: Mikrotron

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and monthly magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Looking beyond the incremental: Reimagining optical devices

Dec. 7, 2023
Rob Devlin, co-founder and CEO of Metalenz, shares the significant people that forged his path to developing one of the most promising optics companies in the world today.

Monolithic integration of functional structures into micro-optical elements

Dec. 6, 2023
A polymer-only ultraviolet imprint process potentially saves costs, simplifies the process, and increases the reliability of the optical element.

Manufacturing thin films with tailor-made electronic properties

Dec. 5, 2023
Unlock the future of optoelectronics as researchers at Leibniz IPHT in Jena, Germany unveil an innovative technique for precision deposition of thin organic semiconductor films...

Quantitative Microscopy with Deep Learning

Dec. 5, 2023
Explore the untapped potential of deep learning in video microscopy with our cutting-edge software, DeepTrack 2.2. Overcoming the steep learning curve, this innovative application...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!