New technique demonstrates in vivo detection of cancer progression

May 19, 2021
In initial research, a new imaging technique has the potential to help medical professionals better detect early cancer and ultimately more effectively treat it.

Using an experimental technique, researchers in Japan have been able to detect the progression of precancerous lesions and early cancer. This could potentially help physicians and patients make decisions about the most effective treatments.

The technique, developed by a team at the Tokyo Institute of Technology, can be implemented using an endoscope that is equipped with spin-LEDs. The method is based on the scattering of circularly polarized light and how it interacts with healthy and unhealthy cells. Specifically, researchers shone near-infrared circularly polarized light on “sliced tissue samples of murine liver containing metastatic lesions derived from intrasplenically injected human pancreatic cancer cells.” They found clear differences in the degree of circular polarization of the light scattered from the samples, depending on the state of the biotissue; this demonstrated that cancer identification is possible with this technique.

The depolarization of circularly polarized light scattered from biological tissues depends on structural changes in cell nuclei, which can provide valuable information for detecting cancer concealed in healthy tissues, says Nozomi Nishizawa, an assistant professor in the Tokyo Institute’s Division of Materials Integration, who led the study.

Existing endoscopic diagnosis techniques, such as narrowband imaging, have only been able to confirm the presence of cancer and distinguish between tumorous and nontumorous tissue. According to the Tokyo Institute study, there are very few direct measurement techniques that can provide “a quantitative diagnosis of the depth and area of a carcinoma.”

The new technique could potentially be used for the diagnosis of ulcerative colitis and alcoholic cirrhosis, as well as the observation of engraftments in regenerative medicine and transplant surgery. Reference: N. Nishizawa et al., J. Biophoton. (2020); doi.org/10.1002/jbio.202000380.

About the Author

Justine Murphy | Multimedia Director

Justine Murphy is the multimedia director for Laser Focus World and Vision Systems Design. She is a multiple award-winning writer and editor with more 20 years of experience in newspaper publishing as well as public relations, marketing, and communications. For nearly 10 years, she has covered all facets of the optics and photonics industry as an editor, writer, web news anchor, and podcast host for an internationally reaching magazine publishing company. Her work has earned accolades from the New England Press Association as well as the SIIA/Jesse H. Neal Awards. She received a B.A. from the Massachusetts College of Liberal Arts.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!