Linear infrared phototransistor array has 50 A/W LWIR photosensitivity

July 14, 2020
A 1 × 8 charge-sensitive infrared phototransistor (CSIP) array cooled to 5 K with an uncooled readout circuit has a photosensitivity of 50 A/W at its peak wavelength of 11 μm.

Longwave infrared (LWIR) sensing and imaging has become a crucial technology for uses as varied as surveillance, autonomous vehicle navigation, and disease detection. New approaches to LWIR sensing are always welcome, at least if they have advantages. Researchers at Fudan University and the Chinese Academy of Sciences (both in Shanghai, China) have provided such advantages by taking the technology of charge-sensitive infrared phototransistors (CSIPs), which are composed of gallium arsenide/aluminum gallium arsenide (GaAs/AlGaAs) double quantum wells and which had previously been demonstrated to have much higher LWIR photoresponsivity than conventional approaches, and taking the first stab at making an imaging array of such devices.

The first experimental prototype is a 1 × 8 linear array of CSIPs; the device has a photoresponsivity of more than 50 A/W at its peak wavelength of 11 μm, which the researchers say is two orders of magnitude higher than for conventional LWIR detectors. While the CSIPs themselves are cryogenically cooled, the readout circuits are not, making for a simpler device. Standard planar photolithography was used to fabricate the CSIPs. The researchers built their own eight-channel pulse generator with identical pulse parameters for each channel and tunable delays between neighboring channels. In the future, a higher sensor count and 2D formats could make this approach useful for low-photon-flux LWIR imaging applications. Reference: H. Wang et al., Appl. Phys. Lett. (2020);

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!