Linear infrared phototransistor array has 50 A/W LWIR photosensitivity

July 14, 2020
A 1 × 8 charge-sensitive infrared phototransistor (CSIP) array cooled to 5 K with an uncooled readout circuit has a photosensitivity of 50 A/W at its peak wavelength of 11 μm.

Longwave infrared (LWIR) sensing and imaging has become a crucial technology for uses as varied as surveillance, autonomous vehicle navigation, and disease detection. New approaches to LWIR sensing are always welcome, at least if they have advantages. Researchers at Fudan University and the Chinese Academy of Sciences (both in Shanghai, China) have provided such advantages by taking the technology of charge-sensitive infrared phototransistors (CSIPs), which are composed of gallium arsenide/aluminum gallium arsenide (GaAs/AlGaAs) double quantum wells and which had previously been demonstrated to have much higher LWIR photoresponsivity than conventional approaches, and taking the first stab at making an imaging array of such devices.

The first experimental prototype is a 1 × 8 linear array of CSIPs; the device has a photoresponsivity of more than 50 A/W at its peak wavelength of 11 μm, which the researchers say is two orders of magnitude higher than for conventional LWIR detectors. While the CSIPs themselves are cryogenically cooled, the readout circuits are not, making for a simpler device. Standard planar photolithography was used to fabricate the CSIPs. The researchers built their own eight-channel pulse generator with identical pulse parameters for each channel and tunable delays between neighboring channels. In the future, a higher sensor count and 2D formats could make this approach useful for low-photon-flux LWIR imaging applications. Reference: H. Wang et al., Appl. Phys. Lett. (2020); https://doi.org/10.1063/5.0007724.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!