The LLE’s OMEGA laser: the 'go to' laser

Aug. 21, 2013
The OMEGA laser at the University of Rochester's Laboratory for Laser Energetics is doing its part for high-energy-density physics research.
John Wallace 720 5d273f13338f5

As we learn from Jeff Hecht’s World News story in the August, 2013 issue of Laser Focus World (INERTIAL-CONFINEMENT FUSION: 2014 laser fusion budgets: Rochester going up, Livermore down), while the National Ignition Facility (NIF) has lost $50 million from its 2014 budget (due directly to sequesters, but indirectly to NIF’s failure to acheive laser-driven fusion "ignition"), the OMEGA laser at the University of Rochester’s Laboratory for Laser Energetics (LLE; Rochester, NY) is getting a 10% boost to $66 million or so.

Hecht notes that the NIF cuts will affect physicists studying high-energy-density (HED) laboratory plasmas; however, he notes that "Although Livermore encourages science on NIF, few outside researchers have been given time on it." The result is, that for many HED researchers, LLE’s OMEGA laser is the “go to” laser.

One example of the study of HED physics at LLE is the compression of iron to a pressure of 560 GPa (5.6 Mbar)greater than the pressure at the center of the Earthby scientists at Lawrence Livermore National Laboratory (LLNL; Livermore, CA), whose results will help in the study of the cores of terrestrial planets, as well as exoplanets. In the experiment, the OMEGA laser helped give an iron sample a series of shocks that greatly compressed the iron while, amazingly, keeping it below its melting point.

So, while I wish all the best for NIF and, especially, its contribution to the U.S. stockpile stewardship program (in which NIF experiments help in determining the reliability of U.S. nuclear weapons without the need for doing nuclear tests), I applaud OMEGA for its availability for research, as well as the long history of laser and inertial-confinement-fusion research at the LLE (since 1965, in fact).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!