Raman spectroscopy device detects glucose levels noninvasively

Oct. 12, 2018
Researchers recently evaluated the accuracy of spectroscopy technology to monitor blood glucose levels. 

Researchers from the University of Missouri School of Medicine (MU; Columbia, MO) and the Massachusetts Institute of Technology (MIT; Cambridge, MA) recently evaluated the accuracy of spectroscopy technology to monitor blood glucose levels without needles or a finger prick. Early results show that the noninvasive technology measures blood glucose levels as effectively as a finger prick test, without drawing blood.

In a study, the research team measured the blood glucose levels of 20 healthy, non-diabetic adults prior to drinking a glucose-rich beverage. Blood glucose levels were then measured in intervals over the next 160 minutes using three methods: spectroscopy, IV blood test, and finger prick. The tests are designed to determine how much glucose remains in the blood and if a patient's insulin-regulating mechanisms are working effectively. The researchers found that spectroscopy predicted glucose values as accurately as a finger prick test.

"Currently, blood glucose levels are tested through a finger prick or intravenously. The approach we studied is noninvasive and uses a laser to monitor glucose levels in the skin," says Anandhi Upendran, Ph.D., director of biomedical innovations at the MU School of Medicine Institute for Clinical and Translational Science and co-author of the study.

Developed by researchers from MIT, the device uses a technique called Raman spectroscopy to measure the chemical composition of skin and extract the amount of glucose out of other skin compartments. A fiber-optic cable attached to a wristband passes laser light onto the skin to detect different components in the skin, such as fat tissue, protein, collagen, and glucose molecules. The shifts in wavelengths associated with glucose present in the blood creates a sort of molecular fingerprint that can be used to determine glucose levels.

The Raman spectroscopy blood-glucose monitor is shown. (Image credit: Massachusetts Institute of Technology)

"We were pleased to find that our initial results show Raman spectroscopy can measure glucose levels that are comparable to the finger stick devices," says Jeon Woong Kang, Ph.D., research scientist with MIT's Laser Biomedical Research Center and co-author of the study. "We hope that we can refine this method to be a noninvasive continuous glucose monitoring sensor."

With more testing, the researchers hope spectroscopy can become an alternative method to test glucose levels in patients in clinical care settings who are not capable of frequent blood draws and, one day, in other settings as the technology becomes smaller and more portable. Future studies will examine the accuracy of the technology in patients with diabetes.

Full details of the work appear in the journal Analytical and Bioanalytical Chemistry.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!