Raman spectroscopy enables 'see-through' analysis of drug capsules

Feb. 19, 2008
February 19, 2008, Oxfordshire, England--Scientists at the Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory have developed an effective laser-based method for the characterization of the bulk chemical content of pharmaceutical capsules without opening the capsules.

February 19, 2008, Oxfordshire, England--Scientists at the Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory have developed an effective laser-based method for the characterization of the bulk chemical content of pharmaceutical capsules without opening the capsules.

In close collaboration with teams from Pfizer Ltd, a leading pharmaceutical company, the researchers in STFC's Lasers for Science Facility succeeded in quantifying the presence of the active pharmaceutical ingredient in production line relevant capsules to a relative error of 1%. Other established non-invasive methods were unable to reach the same level of accuracy with the same sample.

The technique holds great potential for a range of process control applications in the pharmaceutical industry. The results of the collaborative study are reported in the Journal of Pharmaceutical and Biomedical Analysis.

The development stems from research into spatially offset Raman spectroscopy, which is under development at STFC for a wide range of applications including the detection of explosives in non-metallic containers, the detection of counterfeit drugs through opaque packaging and the non-invasive diagnosis of bone disease and cancer. The concepts, which are relatively simple to implement, were developed through experiments involving STFC's large scale facilities which provided crucial insight into photon transport processes.

The development is being carried out in close collaboration with STFC's knowledge technology transfer arm (CLIK) and the new techniques are planned for commercialization through STFC's spin-out company LiteThru Ltd.

"This work is a great example of how leading edge science performed on national scale facilities can be directly translated into solutions for key industrial problems. Direct collaboration between Pfizer and STFC scientists is a model for the future, allowing leading-edge techniques to be appropriately targeted to the benefit of the UK economy", says Prof. Mike Dunne, Director of the Central Laser Facility.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!