FTIR spectroscopy method characterizes Staph bacteria quickly

July 19, 2013
Scientists at the University of Veterinary Medicine Vienna in Austria have developed an infrared (IR) spectroscopy technique for rapidly distinguishing strains of the bacterium Staphylococcus aureus (S. aureus)—those that can cause chronic infections and those that cannot.

Scientists at the University of Veterinary Medicine Vienna in Austria have developed an infrared (IR) spectroscopy technique for rapidly distinguishing strains of the bacterium Staphylococcus aureus (S. aureus)—those that can cause chronic infections and those that cannot. What's more, the technique does not require the use of complex antibodies.

Related: Study shows that blue light destroys antibiotic-resistant staph infection

Related: IR spectroscopy speeds E. coli detection

Related: Shining near-infrared light on life

S. aureus frequently colonizes the skin and the upper respiratory tract of humans. A healthy immune system can fight the microorganism but once the immune system is weakened, the pathogen can spread and lead to life-threatening diseases of the lungs, the heart, and other organs. Moreover, S. aureus produces toxins in foods and can cause serious food poisoning. Its effects are not confined to humans: in cattle, S. aureus frequently causes inflammation of the udders, so the bacterium is also of great interest in veterinary medicine.

Staphylococcus aureus bacteria. (Image courtesy of Tom Grunert/University of Veterinary Medicine Vienna)

S. aureus was previously detected—and the nature of its capsule checked—by means of specific antibodies that bind the capsule. The procedure is relatively complex, as the antibodies are not commercially available and thus have to be produced in animal experiments. Tom Grunert and colleagues at the University of Veterinary Medicine Vienna have now developed a method by which the capsules can quickly and clearly be distinguished from one another without the use of antibodies. The technique relies on Fourier transform infrared (FTIR) spectroscopy, which involves shining IR light on the microorganisms under test. Then, the resulting spectral data are input into a so-called artificial neuronal network, which uses the data to work out the type of capsule. Grunert says that their method enables them to routinely test patient samples with an up-to-99-percent success rate.

Monika Ehling-Schulz, who leads the University of Veterinary Medicine Vienna, notes that detailed knowledge of the mechanisms of virulence and persistence and the way bacteria switch between them will help the researchers to develop novel and more effective therapies.

Full results are published in the Journal of Clinical Microbiology; for more information, see http://bit.ly/1aXPUb1.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!