Raman spectroscopy analyzes lipstick traces non-destructively

Aug. 21, 2013
Using Raman spectroscopy, it is now possible to identify which brand of lipstick someone was wearing at a crime scene without removing the evidence from its bag, thereby avoiding possible contamination.

More Biooptics World Articles

RAMAN SPECTROSCOPY/IMAGING: Life sciences picks up Raman's good vibrations

Raman spectroscopy helps law enforcement take a bite out of crime

Raman spectroscopy analyzes lipstick traces non-destructively

Forensic scientists at the University of Kent in England have established a new way of identifying which brand of lipstick someone was wearing at a crime scene without removing the evidence from its bag, thereby avoiding possible contamination.

Related: Raman spectroscopy helps law enforcement take a bite out of crime

Related: CSI: Multidimensional Raman spectroscopy

Related: Life sciences picks up Raman's good vibrations

Using Raman spectroscopy, forensic investigators will be able to analyze lipstick marks left at a crime scene, such as on glasses, a tissue, or cigarette butts, without compromising the continuity of evidence as the sample will remain isolated. Analysis of lipstick traces from crime scenes can be used to establish physical contact between two individuals, such as a victim and a suspect, or to place an individual at a crime scene. Current analysis of lipstick traces relies on destructive forensic techniques or human opinion.

"Continuity of evidence is of paramount importance in forensic science and can be maintained if there is no need to remove it from the bag," explains Professor Michael Went of the University’s School of Physical Sciences. "Raman spectroscopy is ideal as it can be performed through transparent layers, such as evidence bags. For forensic purposes, Raman spectroscopy also has the advantages that microscopic samples can be analyzed quickly and non-destructively."

Raman spectroscopy is a process involving light and vibrational energy of chemical bonds. When a material--in this case, lipstick--scatters light, most of the light is scattered at its original wavelength, but a very small proportion is scattered at altered wavelengths due to changes in vibrational energy of the material’s molecules. This light is collected using a microscope to give a Raman spectrum, which gives a characteristic vibrational fingerprint that can be compared to spectra of lipsticks of various types and brands. Therefore, it is possible to determine identity of the lipstick involved.

Research into applying the same method on other types of cosmetic evidence, such as foundation powders, eyeliners, and skin creams, is also underway.

Full details of the work are published in the journal Analytical Methods; for more information, please visit http://pubs.rsc.org/en/Content/ArticleLanding/2013/AY/C3AY41274A.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!