Broadband IR light source detects molecular fingerprints of cancer cells with ultrasensitivity

Sept. 28, 2015
A new broadband and coherent infrared light source can detect minute changes in spectral features from cancer cells or tissue.

A newly developed broadband and coherent infrared (IR) light source serves as an ultrasensitive detector for the IR molecular fingerprint region, as it can detect minute changes in spectral features from cancer cells or tissue.

Related: Choosing components to image intracellular signals

The Attoscience and Ultrafast Optics Group at the Institute of Photonic Sciences (ICFO; Barcelona, Spain) led the light source's development, in collaboration with the Laboratory for Attosecond Physics at the Max Planck Institute for Quantum Optics (MPQ; Garching, Germany) and Ludwig-Maximilians University (LMU; Munich, Germany).

The mid-wave IR (MWIR) is an extremely important range of the electromagnetic spectrum because the wavelength of the light can resonantly excite molecular vibrations. Consequently, shining light through a sample leaves the resonant fingerprints in the spectrum, allowing identification. The absence of light sources that cover enough of the IR spectrum with sufficient brilliance to detect minute concentrations originating from onco-metaboloids has been the main challenge in cancer detection.

Emission spectrum of the laser and molecular fingerprint regions.

The new light source, which addresses this need, exerts extreme control over MWIR laser light with unrivaled peak brilliance and single-shot spectral coverage between 6.8 and 16.4 µm. The emitted radiation is fully coherent and emitted 100 million times per second. Each laser pulse has a duration of 66 fs, which is so short that the electric field oscillates only twice. These characteristics, in combination with its coherence, make the light source a compact and ultrasensitive molecular detector.

Prof. Jens Biegert, who led the work, and his colleagues at ICFO are currently investigating molecular sensitivity for the identification of cancer biomarkers on the single-cell level using all-optical techniques in the MWIR range.

Full details of the work appear in the journal Nature Photonics; for more information, please visit http://dx.doi.org/10.1038/nphoton.2015.179.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!