Spectroscopy method helps decode protein used in optogenetics

Jan. 12, 2015
Researchers at Ruhr University Bochum (RUB) and colleagues in Germany used a spectroscopy technique to help shed light upon the mode of action of the channelrhodopsin-2 protein with high spatiotemporal resolution.

Researchers at Ruhr University Bochum (RUB) and colleagues in Germany used a spectroscopy technique to help shed light upon the mode of action of the channelrhodopsin-2 protein with high spatiotemporal resolution. This protein is used in optogenetics, which is deployed to control the activity of living cells with light.

"The model we developed makes it possible to create customized optogenetic tools for individual applications," says Prof. Dr. Klaus Gerwert from the Department of Biophysics at RUB, whose team worked with Prof. Dr. Peter Hegemann's team at Humboldt University of Berlin.

Discovered by Hegemann in green algae, channelrhodopsin-2 is the central light-activated channel protein in optogenetics. If this ion channel is applied to nerve cells, the channels can be opened by light, thus activating the cell.

Gerwert explains that scientists had not been aware of what is actually happening inside channelrhodopsin-2 and what ultimately triggers its activation. But it is the understanding of processes on the atomic level that is essential for optimizing the protein specifically for its applications.

The pore of the ion channel is opened by removing the amino acid E90. Water molecules enter and tilt Helix H2, thus opening the continuous channel. (Image credit: RUB/Eisenhauer)

With time-resolved vibrational spectroscopy and biomolecular simulations, the research team has now closed that gap. The EHT (E90-Helix2-tilt) model describes the mode of action of channelrhodopsin-2 as follows: the light-sensitive group of the protein (the retinal) is twisted under incidence of light. This twist then continues in the protein and opens a pore quickly, which is closed by the amino acid E90 in the dark. E90 marks the narrowest place in the pore and opens it through a downward move, similar to the motion of a swing door, so that water can enter an empty vestibule above the narrowest place in the pore. The entering water then tilts the protein helix H2, which eventually triggers a protein-traversing open ion channel. When forming this model, the RUB researchers benefited from their comprehensive experience that they had gained resolving the mechanism of light-driven proton pump bacteriorhodopsin in detail.

“With this structural model, the next step, i.e. protein engineering, will become possible,” explains Gerwert. Through mutation of the amino acid E90, the protein’s properties can be controlled in a targeted manner. The conductivity or the selectivity for certain ions could be customized for specific applications, and the protein could be specifically activated with different wavelengths.

Full details of the work appear in the journal Angewandte Chemie; for more information, please visit http://dx.doi.org/10.1002/ange.201410180.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!