UV light-activated nanocrystals can ID low concentrations of cancer cells
Researchers at Xi'an Jiaotong University (Xi'an, Shaanxi, China) have developed tiny nanocrystals that could be used in the next generation of medical imaging technologies to light up cancer cells.
Related: NIR imaging system lights up cancer so surgeons can operate with precision
Dr. Yaping Du and colleagues have developed a way to make high-quality nanocrystals of lanthanide oxybromides (LaOBrs), where the lanthanide metal can be lanthanum, europium, gadolinium, or terbium. They produce the materials by heating a readily available precursor material, which also allows them to incorporate triply charged europium ions (Eu3+) as "dopants" into any of the LaOBr nanocrystals.
In the study, the research team explains that their process allows them to very precisely control the exact size and shape of the nanocrystals and it is this that allows them to fine-tune the color of the light these materials produce when stimulated with ultraviolet (UV) light or electricity. Their tests with transmission electron microscopy on the nanocrystals, which form as ultrathin films, plates, and tiny particles, reveal the desired quality and uniformity. X-ray crystallography and UV spectroscopy provide additional detailed evidence about the internal structure of the nanocrystals at the atomic level.
Once they had established the chemical and physical details about the nanocrystals, the team then tested the particles as "staining" agents on a tissue sample containing liver cancer cells held on a microscope slide. They found that these diseased cells could take up the nanocrystals, whereas healthy cells do not—they preferentially "stain" the cancer cells, which can clearly be seen under the microscope through their bright luminescence. Such targeting and ease of identification of cancer cells could allow oncologists to spot tiny numbers of diseased cells in a biopsy sample.
The team also suggests that the bright luminescence of their LaOBr nanocrystals might also be used in low-energy lighting applications as an alternative to compact fluorescent bulbs and light-emitting diodes (LEDs).
Full details of the work appear in the journal Applied Materials Today; for more information, please visit http://dx.doi.org/10.1016/j.apmt.2015.06.001.
Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn