OCT imaging approach for earlier disease detection uses 40% less data

Dec. 11, 2018
The OCT imaging approach could be useful for early detection and classification of a wide range of diseases.

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a fast way to acquire 3D endoscopic optical coherence tomography (OCT) images. With further development, the approach could be useful for early detection and classification of a wide range of diseases, including gastrointestinal diseases.

The method uses computational approaches that create a full 3D image from incomplete data. In the researchers' paper that describes the work, they report that useful 3D images could be constructed using 40% less data than traditional 3D OCT approaches, which would decrease imaging time by 40%.

"Although 3D OCT images are very useful for medical diagnosis, the significant amounts of imaging data they require limits imaging speed," explains research team leader Jigang Wu of Shanghai Jiao Tong University. "Our new method solves this problem by forming 3D images from much less data."

Creating 3D OCT images with current methods requires a data-intensive process of stitching together a series of 2D images taken at equal measurements. In the new work, the researchers used a method known as sparse sampling to acquire considerably fewer 2D images and then applied compressive sensing algorithms to fill in the missing information needed to create 3D images.

The researchers tested the method using a magnetic-driven scanning OCT probe to image inside of an extracted pigeon trachea. The probe, which the team developed previously, uses an externally driven tiny magnet to scan 360°. The design minimizes the OCT scanning mechanisms enough to fit inside a 1.4-mm-diameter device.

Creating 3D images of a 2 mm portion of the human trachea would typically require imaging every 10 µm to obtain 200 image frames. Using sparse sampling, the researchers acquired 120 frames at random positions ranging from 0 to 2 mm and then used the compressive sensing algorithms to create 3D images.

"Our tests verified that a greatly reduced amount of experimental data can be used to reconstruct reasonable 3D OCT images," Wu says. "After we perform enough experiments to demonstrate that our probe and imaging method are useful for observing malignant features, our technique will be ready for clinical trials."

The researchers plan to use their approach to image additional biological samples related to specific diseases. They also plan to improve the endoscopic OCT probe so that it will be more robust in a variety of situations and in the context of repeated contact with biological tissues.

Full details of the work appear in the journalApplied Optics.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!