Femtosecond laser system approach promising for cataract surgery

Nov. 22, 2010
Capsulorhexis—the removal of a disc from the capsule surrounding the eye’s lens—is one of the few aspects of cataract surgery that has yet to be enhanced by technology, but new developments in guided lasers could soon eliminate the need for such manual dexterity.

Capsulorhexis—the removal of a disc from the capsule surrounding the eye’s lens—is one of the few aspects of cataract surgery that has yet to be enhanced by technology, but new developments in guided lasers could soon eliminate the need for such manual dexterity, as reported by Stanford University Medical Center.

A paper from Stanford University School of Medicine, published in Science Translational Medicine, presents clinical findings about a new system for femtosecond laser-assisted cataract surgery is not only safe, but also cuts circles in lens capsules that are 12 times more precise than those achieved by the traditional method, as well as leaves edges that are twice as strong in the remaining capsule, which serves as a pocket in which the surgeon places the plastic replacement lens.

The current procedure involves making an incision in the eye and then performing capsulorhexis: in that step, the paper explains, “The size, shape and position of the anterior capsular opening … is controlled by a freehand pulling and tearing the capsular tissue.” After that, the lens is broken up with an ultrasound probe and suctioned out.

The new approach, called capsulotomy, allows a laser to pass through the outer tissue—without the eye being opened—to cut the hole in the capsule and to slice up the cataract and lens, all of which occurs just before the patient enters the operating suite. The laser also creates a multi-planar incision through the cornea that stops just below the outermost surface, which means that the surgeon needs to cut less once the operation begins, and decreases the risk of infection.

Femtosecond lasers were already being widely and successfully used to reshape the cornea of the eye to correct nearsightedness, farsightedness and astigmatisms. For use in cataract surgery, however, the laser would need to cut tissue deep inside the eye. While the laser would need to reach a level of intensity strong enough to ionize tissue at a selected focal point, it would also have to have pulse energy and average power low enough to avoid collateral damage to the surrounding tissue, retina and other parts of the eye.

Daniel Palanker, Ph.D., associate professor of ophthalmology and the lead author of the paper, and his team found the proper balance through a series of experiments on enucleated porcine and human eyes. They then did further experiments to confirm that a laser at those settings would not cause retinal damage. However, the laser needed to be guided as it made its incisions to ensure that it did not go astray, cutting nearby tissue, and that it would meet exacting specifications for the size of the disc-shaped hole in the lens capsule that it would be creating. To do this, the team used optical coherence tomography (OCT) to get a three-dimensional map of the eye. Using that image, the team developed software that pinpoints the ideal pattern for the laser to follow. It is then superimposed on a three-dimensional picture of the patient’s eye, so that the surgeon can confirm it’s on track before starting the procedure, in addition to monitoring it as the cutting proceeds.

A clinical trial in 50 patients revealed no significant adverse events, supporting the study’s goal of showing that the procedure is safe. The laser-based system came much closer to adhering to the intended size of the capsular disc (typically coming within 25 µm with the laser vs. 305 µm in the manual procedure). And using a measurement that ranks a perfect circle as a 1.0, the researchers found that the laser-based technique scored about .95 as compared with about .77 for the manual approach to cutting the disc from the capsule.

What this means is that when the plastic intraocular lens is placed in the capsular bag, it will be better centered and have a tighter fit, reducing the chances of a lens shift and improving the alignment of the lens with the pupil. This is increasingly important as more patients choose to have multifocal and accommodating lenses, which need to be aligned more precisely with the pupil to function well.

The laser-assisted surgery offered other benefits aside from the capsulotomy. The paper notes that because the laser has already spliced the lens, there’s less need to use the ultrasound probe. Its excessive use in hard cataracts can sometimes create too much heat and damage the corneal endothelium and other surrounding tissue. The laser also can create a multi-planar zigzag pattern for the incision in the cornea, allowing the incision to self-seal and decreasing the likelihood of infection and other complications.

While not an endpoint of the study, the researchers found that the new procedure did improve visual acuity more than the traditional approach; however, the difference was not statistically significant due to the small number of patients enrolled. As such, Palanker said a properly designed clinical study is needed to quantify improvements in vision with various types of intraocular lenses; such research may take place in the United States if the U.S. Food and Drug Administration (FDA) approves the new machine. Data from Palanker’s study is going to be submitted to the FDA for consideration.

While the technology to perform capsulotomy is being developed by a number of private companies, this paper focuses on a specific system being produced by OpticaMedica Corp. (Santa Clara, CA), which funded the study.

Source: Stanford University Medical Center


Posted by Lee Mather

Follow us on Twitter

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!