Optical brain imaging noninvasively measures small perfusion changes caused by visual stimulation

July 1, 2016
An optical brain imaging system can track very small, focal changes in cortical perfusion resulting from visual stimulation.

In a recent study, Cephalogics (Boston, MA) demonstrated that its high-density diffuse optical tomography (HD-DOT) system can measure and monitor very small, focal changes in cortical perfusion resulting from visual stimulation in healthy volunteers. The company's noninvasive, portable brain perfusion imaging system is being designed to provide continuous bedside monitoring of regional brain oxygenation in patients suffering from stroke or traumatic brain injury.

Related: Imaging distributed function and networks in the human brain

Retinotopic mapping of visual cortex activation has been widely used and accepted in early evaluations of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) because of its ability to generate small focal changes in perfusion. Using a typical retinotopic stimulation experiment, the company's fiber optic-free HD-DOT system demonstrated the ability to image retinotopic visual stimuli consistent with earlier studies using standard PET and fMRI. The study results replicate the previous work of Joseph P. Culver, Ph.D., at Washington University St. Louis (WUSTL; St. Louis, MO), who is a pioneer of HD-DOT.

The changes in cortical perfusion measured by the company's HD-DOT system in this study are significantly smaller than the typical perfusion changes associated with brain injury patients. Similarly, the area of cortical tissue that changes in response to the visual stimuli used in this study is much smaller than the spatial extent of the perfusion deficits typically expected with brain injuries. The ability to measure perfusion changes in cortical tissue of such small magnitude and in such focal areas demonstrates that the system should have the ability to reach the necessary sensitivity and spatial resolution for imaging cerebral perfusion. Giving clinicians easy access to continuous imaging and perfusion measures at the bedside can help them identify and treat perfusion deficits to avoid ischemia and its associated adverse outcomes.

The results were presented on June 29, 2016, at the Human Brain Mapping conference in Geneva, Switzerland.

For more information, please visit www.cephalogics.com.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!