Microscopy technique yields color maps of tumor margins

Dec. 2, 2010
Nonlinear interferometric vibrational imaging (NIVI) is a novel microscopy technique that delivers easy-to-read, color-coded images of tissue that outline clear tumor boundaries, which could eliminate the wait for cancer biopsy results.

Nonlinear interferometric vibrational imaging (NIVI) is a novel microscopy technique that delivers easy-to-read, color-coded images of tissue that outline clear tumor boundaries, which could eliminate the wait for cancer biopsy results. The study in mouse models of breast cancer showed that the new technology was more than 99% accurate and delivered results in minutes, as reported by the journal Cancer Research in its December 1 issue.

The NIVI technology, developed by Stephen Boppart and colleagues from the Beckman Institute for Advanced Science and Technology at the University of Illinois (Urbana, IL), is based on the concept that pathologic anomalies are associated with variations in the biochemical composition of cells, and that different molecules have distinctive vibrational energy states in their bonds. The rationale for use of NIVI imaging in oncology lies in the fact that cancer cells have a higher concentration of proteins, whereas healthy cells have a higher concentration of lipids.

NIVI uses two beams of light—one for a reference and the other to excite the tissue and isolate the signal. The resulting image analysis yields red for cancer and blue for healthy cells, allowing for a color map of the tumor margins.

In the current paper, the investigators showed that in a rat model of breast cancer, the technology could differentiate between cancer and normal tissue sections with greater than 99% confidence intervals and define cancer boundaries to ±100 µm with greater than 99% confidence interval using fresh, unstained tissue sections. Imaging results were available in less than five minutes.

The investigators are currently working to make the approach faster, the equipment more compact and even portable, with the ultimate goal of developing new light delivery systems, such as catheters, probes or needles that can test tissue in situ without the need to remove samples.

Source: Cancer Research

-----

Posted by Lee Mather

Follow us on Twitter

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!