Optical microscopy, spectroscopy duo IDs materials at the nanoscale

July 30, 2012
An international team of researchers have developed an optical instrument that can chemically identify materials at the nanometer scale.

An international team of researchers from NanoGUNE (San Sebastian, Spain), Ludwig Maximilian University (LMU; Munich, Germany), and Neaspec GmbH (Martinsried, Germany) have developed an optical instrument that can chemically identify materials at the nanometer scale. The work shows promise for research, development, and quality control in biomedicine and the pharmaceutical industry.

Dubbed nano-FTIR, their instrument combines scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. By illuminating the metalized tip of an atomic force microscope (AFM) with a broadband infrared laser, and analyzing the backscattered light with a specially designed Fourier transform spectrometer, the researchers could demonstrate local infrared spectroscopy with a spatial resolution of less than 20 nm. "Nano-FTIR thus allows for fast and reliable chemical identification of virtually any infrared-active material on the nanometer scale," says Florian Huth, who performed the experiments.

Nano-FTIR chemically identifies nanoscale sample contaminations, as shown in the AFM images of a polymethylmethacrylate (PMMA) film on a silicon surface. While the AFM phase contrast indicates the presence of a 100 nm size contamination, the determination of its chemical identity remains elusive from these images. Using nano-FTIR to record a local infrared spectrum in the center of the particle and comparing it with standard FTIR database spectra, it identifies the contamination as a polydimethylsiloxane (PDMS) particle, a type of silicone.

An important aspect of the work is that the nano-FTIR spectra match extremely well with conventional FTIR spectra, while the spatial resolution is increased by more than a factor of 300 compared to conventional infrared spectroscopy.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!