Tip-assisted optics help characterize biomolecular hydrogels

Nov. 23, 2012
Researchers at the Centre for Cooperative Research in Biomaterials' (CIC biomaGUNE) Biosurfaces Unit used a combined microscopy technique, including atomic force microscopy (AFM), with tip-assisted optics to characterize biomolecular hydrogels.

Researchers at the Centre for Cooperative Research in Biomaterials' (CIC biomaGUNE; San Sebastian, Spain) Biosurfaces Unit used a combined microscopy technique—including atomic force microscopy (AFM)—with tip-assisted optics to characterize biomolecular hydrogels, which are soft materials assembled from proteins and glycans that are produced in the human body or by other bioorganisms. Of particular interest for the group's research are cellular coats that are rich in the polysaccharide hyaluronan, which are important in processes such as fertilization, osteoarthritis, and inflammation.

The group, led by Ralf Richter, MSc, Ph.D., develops methods to re-create these specialized natural hydrogels through the controlled assembly from their molecular components in-vitro. Functionalized surfaces are used to guide the self-assembly process. The resulting model films have the advantage that they can be better controlled and studied in much greater detail than the original materials. By doing so, the hope is to understand the fundamental mechanisms behind the assembly and functions of biomolecular hydrogels.

PhD student Xinyue Chen works with the JPK NanoWizard AFM system in the group of Dr. Ralf Richter at CIC biomaGUNE. (Image courtesy of JPK Instruments)

While AFM is used to obtain nanoscale topographic information about the self-assembled architecture of the materials created, it can also quantify the mechanical properties of hydrogels. The group employs colloidal probe AFM to obtain this information, explains Richter, but determining the distance between the probe and the substrate on which the polymer film is deposited is a challenge. In an earlier study, the team overcame this problem by combining reflection interference contrast microscopy (RICM) and AFM in-situ.1 The combined setup they used (JPK Instruments' NanoWizard AFM system) enabled simultaneous measurement of forces and absolute distances between substrate and probe, thanks to a tip-assisted optics module to keep the colloidal probe in the center of the optical image while probing different spots on the surface, he says.

REFERENCE
1. S. Attili and R. P. Richter, Langmuir, 28, 3206 (2012).

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Laser Focus World has gone mobile: Get all of the mobile-friendly options here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!