JPK NanoTracker nano optics platform

July 23, 2008
JPK Instruments' NanoTracker optical tweezers and 3D particle tracking system promises live cell imaging at a new level. It enables researchers to trap and track particles from several µm down to 30nm with the ability to control, manipulate and observe vesicles, endosomes, gene and drug spheres, viruses and bacteria, nanoprobes or -carriers, biomarkers or even whole cells in real time with nanometer precision. The system aims to overcome limitations of other technologies.

JPK Instruments' NanoTracker optical tweezers and 3D particle tracking system promises live cell imaging at a new level. It enables researchers to trap and track particles from several µm down to 30nm with the ability to control, manipulate and observe vesicles, endosomes, gene and drug spheres, viruses and bacteria, nanoprobes or -carriers, biomarkers or even whole cells in real time with nanometer precision.

The system aims to overcome limitations of other technologies such as epifluorescence, TIRF, LSM, and video particle tracking, and to open up new applications in many different disciplines including biophysics, biochemistry, cellular and medical research in microbiology, developmental- and system biology, infection research and immune response, toxicity of nanoparticles and many more.

Application include the study of single molecules & biopolymers, cell membranes, cell-particle interaction and viral and bacterial infection.

Until now, the majority of optical tweezers systems have been built by researchers for their own needs. There are variants consisting of different laser set-ups, single or multiple optical traps and different optical detection techniques. JPK's NanoTracker promises the first system with full integration into an inverted research microscope and complete environmental control of the sample. In general, experiments require long-term system stability and this is achieved with the choice of an ultra- stable 1064nm laser, a folded optical pathway in combination with a drift-compensated design.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!