SERRS nanoprobes in development could enable tumor visualization in vivo

March 7, 2016
Surface-enhanced resonance Raman scattering (SERRS) can locate nanoprobes for tumor visualization in vivo.

The Kircher laboratory at Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY) is developing novel nanoprobes for molecular imaging, image-guided therapy, and theranostics. The research team's ultimate goal is to develop a universal technology that allows precise determination of the actual spread of a tumorin vivo. Currently, surgeons cannot see the microscopic extent of the tumor during a procedure, which is essential information for tumor removal and avoiding excess tissue excision.

Related: Handheld Raman scanner could assist in complete brain tumor removal

Physician-scientist Dr. Moritz Kircher, a member of the Department of Radiology, the Center for Molecular Imaging and Nanotechnology, and the Brain Tumor Center at MSKCC, is working on a new generation of nanometer-sized imaging beacons. These allow detection, during surgeries and minimally invasive procedures, of the macroscopic extent of the primary tumor and its true microscopic spread, as well as information on satellite micrometastases. These nanobeacons can be located using surface-enhanced resonance Raman scattering (SERRS), a highly sensitive technique that uses a resonance Raman effect and combines with a surface enhancement obtained from nanoparticles to give dramatic enhancements to the normally weak Raman signal. SERRS can work with other whole-body imaging methods like magnetic resonance imaging (MRI) or positron emission tomography (PET).

Postdoctoral fellow Anton Oseledchyk, MD, and Dr. Moritz Kircher of Memorial Sloan Kettering Cancer Center.

Kircher explains that his research team's SERRS nanoparticles are not only universal with regards to tumor type, they also allow them to detect microscopic tumor extensions from the main tumor into the periphery, microscopic loco-regional metastases, and even premalignant lesions.

Recent details of the work appear in the Journal of Nuclear Medicine; for more information, please visit http://dx.doi.org/10.2967/jnumed.115.158196.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!