Atomic force microscopy system can image nanoscale dynamics of neurons

March 16, 2015
Using atomic force microscopy (AFM), a team of researchers imaged the structural dynamics of living neurons with unprecedented spatial resolution.

Using atomic force microscopy (AFM), which incorporates a laser, researchers at the Max Planck Florida Institute for Neuroscience (Jupiter, FL) and Kanazawa University (Japan) have succeeded in imaging the structural dynamics of living neurons with unprecedented spatial resolution.

While progress has been made over the past decades in the pursuit to optimize AFM for imaging living cells, there were still a number of limitations and technological issues that needed to be addressed before fundamental questions in cell biology could be addressed in living cells.

Drs. Ryohei Yasuda and Mikihiro Shibata of Max Planck, in collaboration with Kanazawa University, built a new AFM system optimized for live-cell imaging. The system differs in many ways from conventional AFM, as it uses an extremely long and sharp needle attached to a highly flexible plate. The system is also optimized for fast scanning to capture dynamic cellular events. These modifications have enabled researchers to image living cells, such as mammalian cell lines or mature hippocampal neurons, without any sign of cellular damage.

In particular, this study demonstrates the capability to track structural dynamics and remodeling of the cell surface, such as morphogenesis of filopodia, membrane ruffles, pit formation or endocytosis, in response to environmental stimulants.

According to Yasuda, the successful observations of structural dynamics in live neurons present the possibility of visualizing the morphology of synapses at nanometer resolution in real time in the near future. Since morphology changes of synapses underlie synaptic plasticity and our learning and memory, this will provide us with many new insights into mechanisms of how neurons store information in their morphology, how it changes synaptic strength and ultimately how it creates new memory.

Full details of the work appear in the journal Scientific Reports; for more information, please visit http://dx.doi.org/10.1038/srep08724.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!