MULTIPHOTON IMAGING/NONLINEAR MICROSCOPY/NANOTECHNOLOGY: Two-photon microscopy studies facilitate research on nanoparticle safety

Jan. 1, 2012
An international research team has leveraged nonlinear optical microscopy to study the effect of zinc oxide (ZnO) nanoparticles in sunscreen that have raised a debate over product safety.

An international research team has leveraged nonlinear optical microscopy to study the effect of zinc oxide (ZnO) nanoparticles in sunscreen that have raised a debate over product safety. The nanoparticles’ high optical absorption in the UVA and UVB range, along with their visible-spectrum transparency, makes them appealing for inclusion in lotions—but the particles have been shown to be toxic to certain types of cells in the body. By characterizing the nanoparticles’ optical properties, the Australian and Swiss team found a way to quantitatively assess how far the nanoparticles might migrate into skin.

To test the concentration of ZnO at different depths, the researchers used an optical nonlinear microscope to send short pulses of laser light to skin samples and measure the return signals. Initial results showed that ZnO nanoparticles—in a formulation that had been rubbed into skin patches for 5 minutes, incubated at body temperature for 8 hours, and then washed off—did not penetrate beneath the stratum corneum, or topmost layer of the skin. According to the researchers, the optical characterization approach should be a useful tool for future noninvasive in-vivo studies.

1. Z. Song et al., Biomed. Opt. Exp., 2, 12, 3321–3333 (2011).

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!