FBG-based interferometer senses the tiniest of acoustic signals

Aug. 9, 2017
A different type of fiber Bragg grating (FBG)-based sensor has 1000X more sensitivity than standard FBG sensors.

Fiber-Bragg-grating (FBG)-based optical sensors are typically used to measure distributed stress, strain, and temperature over a wide area. But a different type of FBG-based sensor from Optics11 (Amsterdam, Netherlands) has 1000X more sensitivity than standard FBG sensors, and is around 100X faster compared to Rayleigh-scattering technology.

Rather than detecting the reflected signals from individual FBGs along a length of fiber, the ZonaSens system is instead an interferometer that measures an optical phase change defined as a variation of displacement or refractive index between FBGs. By measuring the phase of light reflected, for example, from four physically separate FBGs labeled A1, A2, A3, and A4, ZonaSens can define simultaneous signals (“zones”) A43 and A21, which are equal to the optical path difference between given FBGs. The total amount of simultaneous zones in one fiber can be up to 80—however, by combining multiple fibers, this number can reach a few hundred. And there is no optical time-domain reflectometer (OTDR), optical Fourier-domain reflectometer (OFDR), or spectral processing involved. Because the resolution of the measurement is on a subnanometer scale, the system can monitor extremely tiny changes in strain at rapid speeds up to 1 MHz and acquire an acoustic signal from the fiber (and associated object or system) under test.

Applications include analysis of ultrasound signals for structural health monitoring (for instance, bearings at around 200–300 kHz) that are traditionally limited to around 10 kHz for standard technologies. Other applications include monitoring of train wheels, pumps/drills and similar mechanical equipment, and hydrophone-related systems that require high speed and high sensitivity. Reference: http://optics11.com/products/zona-sens.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!