Efficient one-way optical nanoantenna is also a beam scanner

March 7, 2013
Fed by an optical waveguide, an optical nanoantenna can be used to emit infrared (IR) or visible light in a highly directional manner (just as a radio antenna does for radio waves).

Fed by an optical waveguide, an optical nanoantenna can be used to emit infrared (IR) or visible light in a highly directional manner (just as a radio antenna does for radio waves). However, backreflections originating at the juncture between waveguide and optical antenna sap the efficiency of the configuration. Because scaling the matching-circuit idea for radio antennas down to optical wavelengths is not practical, another approach must be used. Yakir Hada and Ben Steinberg of Tel Aviv University (Tel Aviv, Israel) have come up with a potential solution: a waveguide that ends in a structure that permits only one-way propagation.

The nonreciprocal light transmission happens as a result of the interaction of nonreciprocal optical Faraday (cyclotron) rotation and structural chirality. Faraday radiation occurs when charged particles move in a magnetic field, and so the one-way waveguide contains plasmonic structures (called a subdiffraction chain, or SDC) to which an external magnetic field is applied. For chirality, the researchers design the SDC in a spiral shape (actually a chain of metal ellipsoids spaced 11 nm apart and unidirectionally rotated along the chain). The researchers modeled the structure, showing that a chain length of about three wavelengths produced a directional beam at high efficiency (81% for the antenna itself) for a 0.4 μm wavelength. In addition, changing the strength of the applied magnetic field changed the beam direction, producing a scanner with a 60° deflection range. Contact Steinberg at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!