Laser-driven microbubble implosion is new way to create a tabletop particle accelerator

May 24, 2018
Simulations show that ultrafast laser pulses could create imploding bubbles in matter, producing relativistic protons.

Scientists at Osaka University (Osaka, Japan) have discovered a novel particle acceleration mechanism called microbubble implosion, in which extremely high-energy hydrogen ions (in other words, protons traveling at relativistic speeds) are emitted at the moment when ultrafast-laser-produced microbubbles in hydrides (hydrogen-contaning materials) shrink to atomic size.1

Led by Masakatsu Murakami, the group has reported an astonishing (simulated) physical phenomenon: when matter is compressed via the microbubble effect, creating densities comparable to matter the size of a sugar cube weighing more than 100 kg (a compression ratio higher than that for current inertial-confinement fusion experiments), high-energy protons are emitted from positively charged nanoscale clusters. Conventionally, an acceleration distance of several tens to hundreds of meters is necessary for conventional accelerators to generate such high proton energies.

In microbubble implosion, a phenomenon in which ions converge to a single point in space at half the speed of light plays a crucial role. This phenomenon, which looks like the opposite of the Big Bang, is essentially different from any previously discovered or proposed acceleration principles, including other laser tabletop acceleration techniques.

Attosecond time scale

A high-energy femtosecond laser (such as a petawatt laser) is used, with the focused beam producing a peak intensity of 1020 to 1022 W cm−2. The resulting "proton flash" occurs over a time interval of only on the order of 500 attoseconds and within a very small volume of a few cubic nanometers.

This new technique could produce physics and astronomy results toofor example, clarifying unknown space physics at large scales of time and space, such as the origins of high-energy protons (a type of cosmic ray). In addition, as a compact source of neutron radiation through nuclear fusion, this concept could be used in a variety of applications in medical treatment and industry in the future, such as proton radiotherapy to treat cancer and proton-driven inertial-confinement fusion.

Source: https://www.eurekalert.org/multimedia/pub/171111.php

REFERENCE:
1. M. Murakami, A. Arefiev, and M. A. Zosa, Nature Scientific Reports (2018); doi:10.1038/s41598-018-25594-3.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!