LLNL and LLE researchers compress iron to 560 GPa with laser multishock compression

Aug. 13, 2013
Livermore, CA and Rochester, NY--Using the OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, researchers at Lawrence Livermore National Laboratory (LLNL) and LLE have compressed iron to 560 GPa (5.6 Mbar), which is greater than the pressure at the center of the Earth.

Livermore, CA and Rochester, NY--Using the OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, researchers at Lawrence Livermore National Laboratory (LLNL) and LLE have compressed iron to 560 GPa (5.6 Mbar), which is greater than the pressure at the center of the Earth.

Iron is the most abundant element in Earth's core and the sixth most abundant element in the universe. As a key component of terrestrial planets and exoplanets, iron has been one of the most studied materials under extreme conditions.

The record pressure is achieved by dynamic multishock compression. Using a series of shocks (rather than a single shock) keeps the entropy low while compressing the material, which is key to keeping the temperature lower than the melting point and allowing the iron to remain solid. The result is iron with a close-packed structure.

Diagnosing the material properties under extreme conditions is as important as the creation of high-pressure states. The team used extended X-ray absorption fine structure (EXAFS) for the first time in a study on high-energy-density (HED) matter.

Unexpectedly, the team found that the temperature at peak compression is significantly higher than that from pure compressive work. Extra heat is generated by inelastic distortion of the lattice, termed plastic work. It is found that upon fast compression in a few billionths of a second, the strength of iron is enhanced, leading to more plastic work and the elevated temperature.

"It took us more than two years to develop this experimental platform," says Yuan Ping, one of the LLNL researchers. "Now the measurements can be scaled up to larger laser systems, such as the National Ignition Facility, to reach higher pressures or extended to shorter time scale to study dynamics in HED materials."

The research appears in the August 9, 2013 issue of Physical Review Letters.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Horizon Microtechnologies: Coating 3D Printed Parts with Functional Materials

March 28, 2024
Andreas Frölich from Horizon Microtechnologies talks innovations in 3D micro-parts printing with functional materials for various industries.

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!