Machine learning and wrinkle lithography speed up fabrication of broadband light absorbing surfaces for solar cells

Aug. 4, 2017
The resulting quasirandom structures in amorphous silicon absorb 160% more light in the 800 to 1200 nm range.

Researchers at Northwestern University (Evanston, IL) have used mathematics and machine learning to design an optimal material for light management in photovoltaic cells, then fabricated the nanostructured surfaces simultaneously with a new nanomanufacturing technique called wrinkle lithography.1

The fast, highly scalable, streamlined method could replace cumbersome trial-and-error nanomanufacturing and design methods.

Nanophotonic materials and surface treatments are especially useful for light absorption in ultrathin, flexible solar cells. (Other potential uses include anti-wet surfaces and dyeless color in clothing.) For solar cells, the ideal nanostructure surface has quasirandom structures, which appear random but do have a pattern. Designing these patterns can be difficult and time consuming, since there are thousands of geometric variables that must be optimized simultaneously to discover the optimal surface pattern to absorb the most light.

To bypass the issues of nanolithography, the researchers manufactured the quasirandom structures in amorphous silicon using wrinkle lithography, a new nanomanufacturing technique in which wrinkle patterns are rapidly transferred into different materials to realize a nearly unlimited number of quasirandom nanostructures. Formed by applying strain to a substrate, wrinkling is a simple method for the scalable fabrication of nanoscale surface structures.

"Importantly, the complex geometries can be described computationally with only three parameters -- instead of thousands typically required by other approaches," says Teri Odom, a professor of chemistry at Northwestern. "We then used the digital designs in an iterative search loop to determine the optimal nanowrinkles for a desired outcome."

The team demonstrated the concurrent design and manufacturing method to fabricate 3D photonic nanostructures on a silicon wafer for potential use as a solar cell. The resulting material absorbed 160% more light than other designs in the 800 to 1200 nm wavelength range -- a range in which current solar cells are less efficient.

Next, the team plans to apply its method to other materials, such as polymers, metals, and oxides, for other photonics applications.

Source: https://www.eurekalert.org/pub_releases/2017-08/nu-sda080417.php

REFERENCE:

1. Won-Kyu Lee et al., PNAS (2017); http://www.pnas.org/content/early/2017/07/26/1704711114.full

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!