Chip-based superlattice laser design offers inexpensive tunable multicolor output

July 11, 2017
Results show color and intensity of light can be controlled by varying the cavity architecture.

A study done at Northwestern University and Argonne National Laboratory (both in Evanston, IL) has modeled and done experimentation toward the creation of a small, chip-based laser design that outputs multicolor laser light and offers a step forward in integrated-photonics lasers.1 Possible uses include encrypted, encoded, redundant, and higher data-rate flow in optical fibers, as well as multicolor medical imaging of diseased tissue in real time.

"In our work, we demonstrated that multimodal lasing with control over the different colors can be achieved in a single device," says Teri W. Odom, a professor of chemistry at Northwestern. "Compared to traditional lasers, our work is unprecedented for its stable multimodal nanoscale lasing and our ability to achieve detailed and fine control over the lasing beams."

The work offers new insights into the design and mechanism of multimodal nanoscale lasing based on structural engineering and manipulating the optical band structures of nanoparticle superlattices. In the device, nanoparticle superlattices are integrated with liquid gain (dyes). Using this technology, the color and intensity of the light, and the production and tuning of multiple colors at once, can be controlled by simply varying the device's cavity architecture.

In the future, Odom says she and her team are interested in designing white nanolasers by covering blue, green, and red wavelengths simultaneously. Their approach should allow them to change the "whiteness" between warm and cool whites by controlling the relative intensity of the blue, green, and red channels. Additionally, this new work offers possibilities for ultrasensitive sensing in chemical processes (different molecules can be monitored simultaneously) and in-situ cellular imaging at multiple colors (different dye labels would be excited by different laser colors and different biological processes can be correlated).

Source: https://news.northwestern.edu/stories/2017/july/new-laser-design-inexpensive-multi-color-output/

REFERENCE:

1. Danqing Wang et al., Nature Nanotechnology (2017); doi:10.1038/nnano.2017.126

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!