High-temperature plasmonics eyed for solar, data-storage innovation

hotplasmonics
In solar thermophotovoltaics, an extremely thin metamaterial layer uses plasmonic nanoantennas to absorb light and emit it at a longer wavelength, potentially resulting in high-efficiency solar cells. (Birck Nanotechnology Center/Purdue University)

To enable construction of high-temperature optical metamaterials, researchers at Purdue University (West Lafayette, IN) are working to replace silver and gold with high-temperature-resisting materials such as titanium nitride (TiN) and zirconium nitride (ZrN). Potential uses include thermophotovoltaics and heat-assisted magnetic recording (HAMR) data-storage drives.1

"These materials remain stable at the high operational temperatures required for high efficiency and performance," said Urcan Guler, one of the researchers.

A new class of plasmonic technologies could use high temperatures to achieve superior efficiency; for example, in solar thermophotovoltaics, an ultrathin layer of plasmonic metamaterials could dramatically improve solar cell efficiency by converting visible light to near-IR, potentially boosting efficiency from 15% to as high as 85%.

One obstacle, however, is that the operational temperature required for high-efficiency devices is estimated to be around 1500 degrees C. TiN and ZrN have high melting points and chemical stability at temperatures above 2000 degrees C. 

Previous research explored the use of refractory metals such as tungsten or tantalum, which are not good plasmonic materials. Using these metals requires a layer 20 times thicker than is possible with the plasmonic metamaterials, making it far more vulnerable to mechanical stresses caused by the constant expansion-contraction cycle of solar thermophotovoltaic devices.

Two of the scientists have formed a startup company, Nano-Meta Technologies Inc., based at the Purdue Research Park. Nano-Meta Technologies is focusing initially on three applications: solar thermophotovoltaics, HAMR, and a new clinical therapeutic approach.

In the clinical therapeutic concept, TiN nanoparticles might be injected into the bloodstream so that they accumulate in tumors. Clinicians might shine a certain wavelength of light on these nanoparticles from outside the body, causing the particles to heat up and killing the cancer cells. 

For more info, see http://www.nanometatech.com/

Source: http://www.purdue.edu/newsroom/releases/2014/Q2/high-temperature-plasmonics-eyed-for-solar,-computer-innovation.html

REFERENCE:

1. Urcan Gule et al., Science (2014); doi: 10.1126/science.1252722

 

 

Most Popular Articles

Magazine


Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Sprout-G

Up to 18W TEMoo, ultra low noise, integrated chiller

Sprout-H

Up to 10W TEMoo, ultra low noise, integrated chiller

X-PD

Fiber optics Partial discharge sensors and system

RELATED COMPANIES

JAI A/S

Manufactures high performance CCD/CMOS cameras for machine vision, medical, traffic systems, and surveillance. Includes both interlaced and progressive scan with a variety of interface op...

Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field of photonics.

Lighthouse Photonics Inc

Provides sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS) lasers for scientific research, industrial manufacturing and life sciences, including Sprout™ – a high-power, CW...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS