'Temporal cloaking' could bring more secure optical communications

June 10, 2013
West Lafayette, IN--Researchers at Purdue University have demonstrated a method for "temporal cloaking" of optical communications.
West Lafayette, IN--Researchers at Purdue University have demonstrated a method for "temporal cloaking" of optical communications. The work is a time-based analogue of spatial cloaking, such as so-called "invisibility cloaking." Findings were detailed in a research paper appearing in the advance online publication of the journal Nature. Researchers at Cornell University (Ithaca, NY) invented temporal cloaking in 2011, but their approach cloaked only a small fraction (1 x 10-6) of the time available for optically sending data. Now, the Purdue researchers have increased that to about 46%, potentially making the concept practical for commercial applications such as improving security for telecommunications.Related: Time cloak hides optical 'event' "More work has to be done before this approach finds practical application, but it does use technology that could integrate smoothly into the existing telecommunications infrastructure," said Joseph Lukens, a student in Purdue University's electrical engineering graduate program working with his professor, Andrew Weiner.
Basic operation of a "temporal cloak." A signal is modified to have zero intensity when the data are "on," cloaking the information. Then the cloak converts the pulses back to a flat signal, hiding the fact that any data were transmitted. (Joseph Lukens, Purdue University)

While the previous research in temporal cloaking required the use of a picosecond laser, the Purdue researchers achieved the feat using off-the-shelf equipment commonly found in commercial optical communications. The technique works by manipulating the phase of light pulses; the data in regions of destructive interference would be cloaked. In temporal cloaking, two phase modulators are used to first create the holes and two more to cover them up, making it look as though nothing was done to the signal.

"It's a potentially higher level of security because it doesn't even look like you are communicating," Lukens said. "Eavesdroppers won't realize the signal is cloaked because it looks like no signal is being sent."

Sponsored Recommendations

Achieving Ultralow-Loss Photonics Array Alignment

Feb. 23, 2024
Two- and three-dimensional photonics arrays are commonly used for coupling light in photonic integrated circuits. With the increasing demand for ultralow-loss transmission in ...

Control Techniques in Laser Processing

Feb. 23, 2024
A laser processing tool is only as good as the motion equipment underneath it. One must first consider design characteristics of a motion platform, and second, advanced control...

High-Precision Laser Processing for Medical Device Manufacturing

Feb. 23, 2024
Laser processing has been used for decades to manufacture tubular medical devices, such as stents, valves, and vascular grafts. However, achieving the precision that is necessary...

Selecting Optimal Positioning Equipment for Laser Direct-Write Processes

Feb. 23, 2024
Choosing the optimal automation equipment for a given process requires a thorough understanding of the process parameters and the effects of positioning errors on the results....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!