FiLaser licenses U of T burst-pulse laser machining patent to improve glass processing

Strengthened Gorilla glass cut into 1 mm cubes using FiLaser's patented glass process is arranged in the shape of the US, with FiLaser's headquarters in Portland, OR indicated in red.

IMAGE: Strengthened Gorilla glass cut into 1 mm cubes using FiLaser's patented glass process is arranged in the shape of the US, with FiLaser's headquarters in Portland, OR indicated in red.

Portland, OR--Laser startup company FiLaser has successfully licensed a key patent from the University of Toronto (U of T; Toronto, ON Canada), effectively enabling it to control so-called Burst-Pulse Laser Machining in the US and Canada. Through a commercial arrangement, FiLaser has negotiated exclusive access to this technology as it relates to the company's approach to cutting and drilling brittle materials such as glass and silicon. "The technique involves some complex, non-linear physics; the commercial arrangement was significantly less complex," said FiLaser CEO, Jeffrey Albelo. 

The three-year-old startup can cut glass at thickness up to 6 mm with linear processing speeds up to 1.2 m/s. Based upon picosecond laser engines provided by Coherent, the company has developed an ability to cut the toughest glass out there (like Corning's Gorilla glass), including glass after it has been chemically and thermally tempered--which is unique to the FiLaser process.  Portable electronic devices, such as tablets and smart phones require tough substrates in order to stand up to the rigors of daily life. FiLaser says its technology offers today's manufacturers production options previously unavailable. The approach is generic across brittle materials and offers the tantalizing possibility to process sheets of sapphire with similarly stunning results, which could one-day replace chemically tempered glass with the already very scratch-resistant sapphire.  

The technique is especially well suited to brittle materials of sufficient transparency to the laser beam. Whether coated or not, on one side or two, chemically or thermally treated, and for LEDs with and without DBR layers, the process robustly produces parts without chipping. Of particular interest have been substrates made from LiNbO3 and LiTaO3, which are notoriously difficult to process using any available technique, but have been processed without defect using the FiLaser process. Albelo added, "There are a number of areas for which the simple application of cutting and shaping silicon, glass and sapphire can be envisioned, but the real value of our technology lies in some of the new manufacturing techniques that we are in the process of developing. Stay tuned, more 'interesting physics' are on the way."  

The patent is based upon work conducted by U of T inventors professor Robin Majoribanks and professor Peter Herman, in collaboration with then student Anton Öttl, now leading Qubig GmbH. The invention covers certain time-dependent phenomena associated with so-called burst-pulse laser processing of a variety of substrates and the subsequent modifications of the materials thus processed. It covers a broad swath of technologies encompassing both picosecond and femtosecond laser platforms and laser process solutions. "It is quite likely that anybody utilizing lasers for these types of processes will require a sub-license from FiLaser," noted Portland Intellectual Property Attorney, Mark Hubert, "It really provides them with a key addition to their IP portfolio."

FiLaser is based in Portland, OR and maintains an R&D facility there and in Toronto, ON, Canada. It was founded by Abbas Hosseini, Jung Un Na, and Albelo. The company's approach to brittle materials micromachining is based upon techniques first conceived of by Hosseini, a pioneer in the field of analytical filamentation and the attendant nonlinear laser physics accompanying filament generation. 

SOURCE: FiLaser; http://www.filaser.com

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

Mid-infrared lasers in remote chemical sensing – from stand-off detection to atmospheric sounding

In this webcast, Gerard Wysocki of MIRTHE will discuss the unique remote-sensing capabilities enabled by modern mid-infrared (mid-IR) lasers and novel spectr...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...
White Papers

Degradation studies of a VECSEL gain structure using a stable green pump laser

The degradation of the gain structure of a red-emitting Optically Pumped Semiconductor (OPS) Vert...

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kW-class direct diode lasers

In this paper, laser modules based on newly developed tailored bars are presented. The modules al...

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS