Flat 'metasurface' becomes aberration-free lens

Aug. 28, 2012
Cambridge, MA--A 2D metamaterial pattern consisting of an array of subwavelength-spaced optical nanoantennas on a flat silicon surface serves as an aberration-free focusing lens of high-enough quality that it could potentially be used as a microscope objective.

Cambridge, MA--A 2D metamaterial pattern consisting of an array of subwavelength-spaced optical nanoantennas on a flat silicon surface serves as an aberration-free focusing lens of high-enough quality that it could potentially be used as a microscope objective. The array of V-shaped nanoantennas can also be fabricated on axicon surfaces.

The team, consisting of Federico Capasso and his group as the Harvard School of Engineering and Applied Sciences (SEAS) and other researchers at the Università Politecnica delle Marche (Ancona, Italy), Texas A&M University (College Station, Texas), and Università degli Studi di Trento (Trento, Italy), as published the results online in the journal Nano Letters.

Similar to Fresnel zone plate

The V shapes can be altered to increase or increase the local phase discontinuity; arranging the different shapes in rings of varying with allows the researchers to create Fresnel-zone-plate-like devices. The nanoantennas are of gold and are only 60 nm thick. Operating at telecom wavelengths, the new lens is scalable from near-IR to terahertz wavelengths, and is simple to manufacture.

“Our flat lens opens up a new type of technology,” says Capasso, the principal investigator. “We’re presenting a new way of making lenses. Instead of creating phase delays as light propagates through the thickness of the material, you can create an instantaneous phase shift right at the surface of the lens. It’s extremely exciting.”

The flat lens eliminates optical aberrations such as astigmatism and coma, as well as the fish-eye effect that results from conventional wide-angle lenses. The array of nanoantennas can be tuned for specific wavelengths of light by simply changing the size, angle, and spacing of the antennas.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Achieving Ultralow-Loss Photonics Array Alignment

Feb. 23, 2024
Two- and three-dimensional photonics arrays are commonly used for coupling light in photonic integrated circuits. With the increasing demand for ultralow-loss transmission in ...

Control Techniques in Laser Processing

Feb. 23, 2024
A laser processing tool is only as good as the motion equipment underneath it. One must first consider design characteristics of a motion platform, and second, advanced control...

High-Precision Laser Processing for Medical Device Manufacturing

Feb. 23, 2024
Laser processing has been used for decades to manufacture tubular medical devices, such as stents, valves, and vascular grafts. However, achieving the precision that is necessary...

Selecting Optimal Positioning Equipment for Laser Direct-Write Processes

Feb. 23, 2024
Choosing the optimal automation equipment for a given process requires a thorough understanding of the process parameters and the effects of positioning errors on the results....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!